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In this document, we discuss the subject of robustness regarding the objective function.
First, we define robustness and the different types of uncertainties. Secondly, we present the-
oretical aspects about a new measure used to take into account the robustness of the objective
function. Then, we present numerical experiments which allow to understand the interests of
this new measure. Finally, we study theoretically the convexification phenomenon appeared
during our tests with the new measure.

1 Robustness in design optimization
Robust optimization is a part of mathematical optimization which aims to solve an optimiza-
tion problem in taking into account the different sources of uncertainties. However, several
questions arise:

• why are there some uncertainties in a design model and why is it necessary to take
them into account?

• How can we classify these different uncertainties ?

• Which are the current methods in robust optimization ?

We will answer these questions in the next subsections.

1.1 Necessity of robust optimization
When engineers need to optimize a problem, they search to find the right design parameters
with the highest possible precision. However, even if they make great effort in the modelling
and the conception of the product, there will be always some small changes between the
behavior of the modelling product and the real one. Here is a list of the main factors of this
difference [13]:

• The desired design variables are the solution of an optimization problem having an ob-
jective function and constraints. Nevertheless, these objective and constraint functions
are numerical modelling of reality. Even if these models are as precise as possible, it
is possible that the optimum obtained by solving the optimization problems does not
match with the optimum in the reality.

• In the case where the optimum in the reality matches with the numerical model op-
timum, there is still a difficulty. It is possible that the optimal design found by the
numerical modelling is unreachable because of manufacturing uncertainties or the de-
sign costs to reach the desired accuracy.

• Numerous parameters in the model are fluctuating during time, like the temperature
or the humidity rate but are considered constant in the model. Moreover, even when
designers take into account this fluctuation, there is always some parameters, some-
times even unknown by the designer, which are not taken into account by the model.
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Their influence on the design is often very limited but may induce variations in the final
product.

• Finally, a product is never completely finished, each component may be replaced or
repaired during the lifetime of the final product. That can bring some variations in the
behavior of the product which are not forecasted by the numerical model.

Therefore, there are numerous factors which may alter the behavior of a final product.
Using a robust optimization method in the early stage of the design of a product may avoid
flaws in the final product behavior and may reduce the cost induced to repaired them.

1.2 Definition of robustness

1.3 Classes of uncertainties
There are different ways to classify the sources of uncertainties. The terminologies differ
according to the authors or the field in which the concept of design uncertainties is tackled.
Consider the robust scenario of figure 1 taken from [13]. Three main classes of uncertainties
are commonly used in the mathematical community:

Figure 1: A robust design scenario with three classes of uncertainties A, B and C showing on
which part of the problem they appear

• Class A uncertainties
These uncertainties represent the uncertainties due to the environmental parameters of
the system as the temperature, the pressure or the humidity rate. Let f denote the

4



behavior of the system and x the design variables. To take into account these parame-
ters,random variables ν are added, the system is modelled by:

f = f(x, ν). (1)

This class of uncertainties are also called “Type I variations” in [4].

• Class B uncertainties
These uncertainties correspond to the ability of the manufacturer to build the desire
design at a specified degree of accuracy. Indeed, designing a product with a very high
precision may be impossible or very expensive. That is why, there often exists a tol-
erance in the manufacturing of a product. These uncertainties may be modelled in the
function f as small variations δ in the design variables:

f = f(x+ δ) (2)

These uncertainties are called “Type II variations” in [4] and “Precision Error” in [12].

• Class C uncertainties
These uncertainties concern the imprecision in the system output. In practice, it is
impossible to have an exact measure of the output of a system. Moreover, these uncer-
tainties group also the measuring error and all the approximation error due to the use
of models. We can model them as a random function f̃ :

f̃ = f̃(f(x)) (3)

These errors are also called “Bias error” in [12].

Unlike in [13], we do not create another category of uncertainties for the feasibility field
of the function. In fact, each of the previous uncertainties may also be applied to constraint
functions. The three classes of uncertainties are not mutually exclusive and may be combined.
These classes present here are mainly used in the mathematical community because they
differ by their mathematical formulation. In the engineering community, they divide the
different uncertainties in two classes:

• The aleatory or random uncertainties [16] which are irreducible due to their natural
origin. Indeed, these uncertainties have an environmental source like the temperature,
the humidity rate or the stiffness of a material. Even if the manufacturer make a great
effort to contain them, these uncertainties will be still present.

• The epistemic uncertainties represent the lack of knowledge of the manufacturer. These
uncertainties could be reduced but at a great financial or technological cost. These
uncertainties are often due to the model used to represent the reality or due to the
numerical errors made during the problem solving.

In this paper, the mathematical classification is often used in order to be more formal. Never-
theless, it is possible that in the practice case, we use also the terminology of the engineering
community.
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1.4 Uncertainties frameworks
Once we have classify the different classes of uncertainties, we give some mathematical
uncertainties frameworks. In the literature, there are basically three:

• Using a probabilistic framework [19], for each uncertain variable, a probabilistic law
is defined. This framework is particularly adapt for aleatory uncertainties. Indeed, the
source of this class of uncertainties is often known for a long time. Thus, their behavior
may be modelled thanks to a probabilistic law for instance.

• Using a deterministic interval framework [22], for each uncertain variable, a domain is
stated in which the variable can vary.

• Using the possibility framework [9] [19] , for each uncertain variable, a fuzzy set is
defined. These two later frameworks are often used to model the epistemic uncertain-
ties because these uncertainties vary from a model to another and it makes it difficult
to model with a probabilistic framework.

In this paper, the uncertainties take into account are those of class A and B. Their behav-
iors are assumed known, thus the framework develop in the next section is the probabilistic
one.

1.5 Current approaches in robust optimization
In this Section, we present three different methods to treat uncertainties in robust optimization
based on the three different models from the previous Section.

1.5.1 The Robust Counterpart Approach

This approach was developed mainly by the authors of [1]. The concept is simple, given an
objective function f(x) to optimize, the Robust Counterpart of this function is defined as:

FRC(x; ε) = sup
ξ∈B(x,ε)

f(ξ) (4)

where B(x, ε) is a neighborhood on the design variable x whose the size depends of the
regularization parameter ε. The link between the function f and its robust counterpart FRC is
given by the size ε, by the following relation:

lim
ε→0

FRC(x; ε) = f(x). (5)

In the previous equations we show the application of Robust Counterpart in case of class B
uncertainties. However, we can also easily apply it with uncertainties of class A:

FRC(x; ε) = sup
α∈B(ε)

f(x, α) (6)
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where B(ε) is a neighborhood on the random parameters of the system. The main strength of
the Robust Counterpart approach is, in addition to handle class A or B uncertainties, to take
into account the constraints also. For instance, if we consider the following linear program-
ming (LP) problem:

min
x
{cTx : Ax ≤ b} (7)

Then, in presence of uncertainties of class A (on the data of the problems), the uncertain LP
problems may be defined as a collection of LP problems:

{min
x
{cTx : Ax ≤ b} : (c, A, b) ∈ U} (8)

where the data (c, A, b) varying in a given uncertainty set U . Solve this uncertain LP prob-
lem, is searching a solution which is a fixed vector remaining feasible for the constraints,
whatever the realization of the data within U . That leads to consider a worst case scenario
mathematically modelled by the resolution of a min-max problem:

min
x

{
sup

(c,A,b)∈U
cT : Ax ≤ b ∀(c, A, b) ∈ U

}
(9)

or equivalently what is called the Robust Counterpart of the original uncertain problem:

min
x,t
{t : cTx ≤ t, Ax ≤ b ∀(c, A, b) ∈ U}. (10)

The methodology of the Robust Counterpart is fully applicable in context of linear, conic
and semidefinite programming. There are advantages to the Robust Counterpart approach,
however in our context of blackbox optimization there is a great limitation: the Robust Coun-
terpart approach necessitates to have a problem with a known fixed structure. It is not the
case in the blackbox optimization where the objective function and the constraints are very
often the results of numerical simulations.

1.5.2 The possibilistic uncertainties approach

In the previous section and in the next section, the uncertainties are modelled using complete
information on the uncertainties, for instance their bounds or their distributions. However,
there are numerous cases where these information are not available, especially if epistemic
uncertainties are treated. To treat this type of uncertainties, there are commonly two ways:

• Either, a probabilistic model is used and improved iteratively with new knowledge,
using bayesian statistic for instance.

• Or fuzzy sets and evidence theory are used.

The idea behind the fuzzy set methodology is to associate at each value of the objective
or constraints functions a measure belonging to a certain set. For example if an optimum of
the unconstrained objective function is denoted f(x∗), then we associate to this x∗ a measure
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µf (x
∗) = 1. In the contrary the worst design is assigned a measure of 0. Between the two

design, we can assign intermediate value. In the constrained case, it is almost the same.
The measure µc(x) ∈ [0, 1] indicates if the design is certainly feasible µc(x) = 1, certainly
infeasible µc(x) = 0 or intermediate µc(x) ∈]0, 1[. The problem is then to find the design x∗

in:
argmax

x
[min(µf (x), µc(x))]. (11)

Although, there is a mathematical background quite large on the possibility theory, the
fuzzyfication of a problem stay complex:

• Determing the concrete forme of the measure µ may be quite difficult, especially when
the problem combines different fuzzy constraints.

• The numerical effort to solve the min-max problem may be computationally high in
case of real application.

1.5.3 The probabilistic risk measure approach

A third approach to handle uncertainties is the probabilistic one. A strong hypothesis in this
approach is to suppose that the distribution of the random variables is known. In the two pre-
vious approaches less information is needed on the random variables, the bound in the first
case and nothing in the second one. Nevertheless, in context of blackbox optimization where
the structure of the problem is not known, these two approaches are difficult to enforce. In
case of probabilistic approach, we regard δ, ν and f̃ of equations 1, 2 and 3 as random vari-
ables. That is, the function f and the constraints themselves become random functions. We
will expose the different manner to treat the uncertainties in this case, first for the objective
function then for the constraints.

Case 1: how to handle a random objective function?

The search for an optimal design of a random objective function is not obvious. Indeed,
the random aspect of the function introduces a new paradigm: what is called a minimum ?
However, a first answer to this question is to obtain the optimal design in “mean”. Never-
theless, consider the optimal design, just in term of mean may be hazardous. Indeed, the
best mean result may lead to a design with a great deviation in its behavior. That is why, the
goal of the designer is to find a trade-off between an optimal solution in term of mean perfor-
mance and the deviation of this optimal performance. The original robust problem becomes
a bi-objective problem and there are two commonly ways to solve it:

• Optimize a weighted sum between the expectation of the objective function E[f(x+δ)]
and its standard deviation σ[f(x+ δ)], i.e.:

min(1− β)E[f(x+ δ)] + βσ[f(x+ δ)] (12)

Examples of this solution is present in [21].
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• See that a multi-objective problem and search the Pareto optimal solutions of the prob-
lem: {

minE[f(x+ δ)]
minσ[f(x+ δ)]

An application of this method may be found in [25].

We present these previous cases with the class B uncertainties but it works for any classes of
uncertainties. Each of this method rises a technical matter: the choice of β in the first case
and the numerical cost of searching a Pareto front in the second one.

Case 2: how to handle the random constraints ? A common way of handling the
random constraints g(x + δ) ≤ 0 is to consider the inequalities probabilistically, called a
chance constraints:

P(g(x+ δ) ≤ 0) ≥ α (13)

where α is the confidence index and δ a random variable. This field is called reliability
based design optimization (RBDO) see [27] for a review of the main methods. The difficulty
in RBDO is the fact that the constraint 13 is an integral. Let consider a unique constraint,
equation 13 may be written as:

P(g(x+ δ) ≤ 0) =

∫
g(x+δ)≤0

p(δ)dδ ≥ α (14)

with p the probability density function of δ. Since the chance constraint is non linear and
involve integral, it numerical calculation is often costly. In practice, designers use approx-
imation as First-Order Reliability Methods(FORM) or Second Order Reliability Methods
(SORM) [6] to handle it (see section on the handling of constraints).

2 A new risk measure: Average Value-at-Risk
Let (Ω,F ,P) be a sample space, equipped with the sigma algebra F and a measure on this
sigma algebra P, on which considered uncertain outcomes (random function Z = Z(ω) ∈
R) are defined. By a risk measure we understand a function ρ(Z) which maps Z into the
extended real line R̄. The specific measure introduced below is the subject of many works.
The terminology used in this paper is the one used in [2]. Nevertheless, this measure has
been called Conditional Value-at-Risk in [23] and is equivalent to Expected Shortfall in [3].
For each terminology a corresponding formulation exists. That is why, in this section, we
describes first the different formulation, then we speak about the coherence of a risk measure
[11] which is a set of properties of a risk measure. Finally, we will show a result about the
minimization of the Average Value-at-Risk.
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2.1 Average Value-at-Risk formulations
First, we are going to define the Average Value-at-Risk in the terminology of [23].

Definition 2.1. The Conditional Value-at-Risk of Z ∈ L1(Ω,F ,P) at level α ∈ [0, 1] is the
risk measure define by:

CV ARα(Z) = inf
t∈R
{t+ α−1E[(Z − t)+]} with (Z − t)+ = max(Z − t, 0). (15)

In [2], they use another formulation with two different parameters, in the following of the
paper, we use this formulation because it allows more flexibility (due to the two parameters).

Definition 2.2. Let β1 ∈ [0, 1] and β2 ∈ [0,+∞], the average value-at-risk ofZ ∈ L1(Ω,F ,P)
at level α = β1

β1+β2
is defined by:

AV ARα(Z) := E[Z] + inf
t∈R

E[β1(t− Z)+ + β2(Z − t)+]. (16)

In the next lemma, we are going to see that the two formulations are equivalent in the
case where β1 = 1 and β2 > 0. This result is p. 276 of [2].

Lemma 2.3. If β1 = 1 and β2 > 0 then we have ∀Z ∈ L1(Ω,F ,P):

AV ARα(Z) = CV ARα(Z). (17)

Proof. Let Z ∈ L1(Ω,F ,P), β1 = 1 and β2 > 0, we have:

AV ARα(Z) = E[Z] + inf
t∈R

E[β1(t− Z)+ + β2(Z − t)+]

= E[Z] + inf
t∈R

E[β1(t− Z) + β1(Z − t)+ + β2(Z − t)+]

= E[Z]− β1E[Z] + inf
t∈R

E[β1t+ (β1 + β2)(Z − t)+]

= (1− β1)E[Z] + β1inf
t∈R
{t+ E[

β1 + β2

β1

(Z − t)+]}

= (1− β1)E[Z] + β1CV ARα(Z)

And replacing β1 by 1, we obtain:

AV ARα(Z) = CV ARα(Z).

Another terminology for this risk measure exists and is due to [3]: Expected Shortfall. In
order to formulate this notion, we must first introduce the Value-at-Risk risk measure which
the based of all the others measure described in this section (even if it does not appear directly
in the previous formulation).
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Definition 2.4. We define the Value-at-Risk of level α as:

V ARα(X) = inf{t : P(X ≤ t) ≥ 1− α} (18)

Once, we have define this measure,then we can also define the Expected Shortfall in case
where Z is a real valued random variable (see proposition 3.2 of [3]).

Definition 2.5. We call the Expected Shortfall of Z ∈ L1(Ω,F ,P) at level α the following
value:

ESα(Z) =
1

α

∫ 1

1−α
V AR1−τ (Z)dτ. (19)

In fact, the Expected Shortfall is equivalent to the formulations 2.1. We will prove it in
2.10 after having stated some other theoretical results.

2.2 Average Value-at-Risk: a coherent risk measure
The different measure of risk are not all equivalent. Indeed, some risk measures have some
good properties. We say then that the measure is coherent. In the following, we note Z =
Lp(Ω,F ,P) with p ∈ [1,+∞) the spaces of variables Z. By assuming that Z ∈ Z , we
assume that the random variable Z(ω) has a finite p-th order moment with respect to the
reference probability measure P.

Definition 2.6. We say that a measure ρ is a coherent risk measure if it satisfies the four
conditions below:

• Convexity:
ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′)

for all Z,Z ′ ∈ Z and all t ∈ [0, 1].

• Monotonicity: If Z,Z ′ ∈ Z and Z(ω) ≥ Z ′(ω) for a.e. (almost every) ω ∈ Ω, then:

ρ(Z) ≥ ρ(Z ′).

• Translation equivariance: If a ∈ R and Z ∈ Z , then ρ(Z + a) = ρ(Z) + a.

• Positive homogeneity: If t > 0 and Z ∈ Z , then ρ(tZ) = tρ(Z).

These properties will be able to be useful in further works particularly if we decide to
work on differentiability of risk measures. The following lemma is not explicitly prove in [2]
but it is an application of the proof they made in a more general case.

Lemma 2.7. The average value-at-risk measure defined with the specified β1 and β2 in (16)
is a coherent risk measure.
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Proof. First, let introduce the functions:

∀x ∈ R h(x) = β1(−x)+ + β2(x)+ and g(x) = x+ h(x).

The derivatives of g is:

g′(z) =

{
1− β1 if z < 0
1 + β2 if z > 0

Thus, for the specified β1 and β2, g is non decreasing and is convex. Moreover, we can see
(16) as follows:

AV ARα(Z) = inf
t∈R

E[t+ g(Z − t)] (20)

where g is the function defined with β1 ∈ [0, 1] and β2 ∈ [0,+∞). Thus, we can prove all
the points above:

• Since g is convex with the specified β1, β2, then by linearity of the expectation and
convexity of inf, we have AV ARα which is convex.

• With the same arguments, since g is non decreasing thenAV ARα is monotone and non
decreasing.

• We have for any a ∈ R:

AV ARα(Z + a) = inf
t∈R

E[Z + a+ h(Z + a− t)]

= E[Z] + a+ inf
t∈R

E[h(Z + a− t)]

= E[Z] + a+ inf
t∈R

E[h(Z − t)] = AV ARα(Z) + a

• Finally, for all u > 0, we have:

AV ARα(uZ) = inf
t∈R

E[uZ + h(uZ − t)]

= u× inf
t∈R

E[Z + h(Z − t

u
)]

= u× inf
t∈R

E[Z + h(Z − t)] = u× AV ARα(Z).

We have seen that the Average Value-at-Risk measure is a coherent risk measure. Fulfill-
ing the four conditions are not obvious, for instance the mean-variance risk measure are not
coherent risk measure. In the next Section, we are going to use a part of this result to prove
others results.
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2.3 Minimum of Average Value-at-Risk and equivalence with Expected
Shortfall

In this section, we are going to state some interesting results. The first one shows the link
between the Average Value-at-Risk and the Value-at-Risk. In fact, the first risk measure
attains its minimum at the second one. The second result shows the link between Expected
Shortfall and Conditional Value-at-Risk (and thus with Average Value-at-Risk). It allows also
to understand why this name have been chosen. Let begin by the first result:

Proposition 2.8. The measure AV ARα defined in (16) attains its minimum with respect to t
at:

t∗ = inf{t : P(Z ≤ t) ≥ 1− α} with α =
β1

β1 + β2

. (21)

In order to prove the above proposition, we will need the following result from theorem
7.46 of [2]. In this theorem, we consider a random function Fω : Rn × Ω −→ R̄ and the
corresponding expected value function f(x) = E[Fω(x)].

Theorem 2.9. Suppose that the random function Fω(x) is convex and the expected value
function f(x) is well defined and finite valued in a neighborhood of a point x0. Then, f(x) is
convex, directionally differentiable at x0 and we have:

f ′(x0, d) = E[F ′ω(x0, d)] for all direction d. (22)

Moreover, f(x) is differentiable at x0 with probability 1, in which case:

∇f(x0) = E[∇xFω(x0)].

Proof. See the proof of theorem 7.46 of [2].

Henceforth, we have all the results necessary to prove the proposition 2.8.

Proof. Let take β1 ∈ [0, 1] and β2 ≥ 0, since we search the minimum of AV ARα(·) with
respect to t, it is sufficient to study, for Z ∈ L1(Ω,F ,P) and t ∈ R:

f(t) = E{hω(Z − t)} = E[β1(t− Z(ω))+ + β2(Z(ω)− t)+}

We know that f is well defined and finite valued for Z ∈ L1(Ω,F ,P). Moreover, since what
we have proved in lemma 2.7, we know that hω(·) is convex and differentiable everywhere
except at x = Z(ω). The corresponding derivative is given by:

∂hω(Z − t)
∂t

=

{
β1 if t > Z(ω)
−β2 if t < Z(ω)

13



And we have ∀t 6= Z(ω) by theorem 2.9:

f ′(t) = E
[
∂hω(Z − t)

∂t

]
= β1P(t > Z)− β2P(t < Z).

For the case where t = Z(ω), there are two ways:

• Either, the cumulative distribution function of Z is continuous at t0 = Z(ω), then the
event {t0 = Z(ω)} has zero probability, thus we have by the second point of theorem
2.9 (we can see that in a way as an extension by continuity):

f ′(t0) = E
[
∂hω(Z − t0)

∂t

]
= β1P(t0 > Z)− β2P(t0 < Z) (23)

So, this formula is true ∀t ∈ R. We can conclude since f is convex and differentiable
everywhere that the minimum is reached at t∗ ∈ R such that:

f ′(t∗) = 0⇔ P(Z ≤ t∗) =
β2

β2 + β1

= 1− α.

• Or the cumulative distribution function is not continuous at t0 = Z(ω) but by the
first point of theorem 2.9 the directional derivatives exist. Thus, we must study the
derivative of f on the right of t0 and on the left. On the right side of t0, we have:

f ′(t0, 1) = E[h′ω(Z − t0, 1)]

= E
[

lim
h→0

hω(Z − (t0 + h))− hω(Z − t0)

h

]
= E

[
lim
h→0

β1(t0 + h− Z(ω))+ + β2(Z(ω)− t0 − h)+

h

]

because hω(Z − t0) = 0. And then by the Monotone Convergence Theoreme (using
the same arguments that in the proof of theorem 7.46 of [2]), we can switch the lim and
E[·]:

f ′(t0, 1) = lim
h→0

E
[
β1(t0 + h− Z(ω))+ + β2(Z(ω)− t0 − h)+

h

]
= lim

h→0
β1P(t0 + h ≥ Z(ω))− β2P(t0 + h ≤ Z(ω))

= lim
h→0

β1P(t0 + h ≥ Z(ω))− β2 + β2P(t0 + h ≥ Z(ω))

So, a first condition on the minimum of f on the right side of t0 = Z(ω) is:

lim
h→0

P(Z ≤ t0 + h) = 1− α i.e. t∗ = inf{t : P(Z ≤ t) ≥ 1− α} (24)
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On the left side of t0 = Z(ω), we have by symmetry:

f ′(t0,−1) = lim
h→0

β1P(t0 − h ≥ Z(ω))− β2 + β2P(t0 − h ≥ Z(ω))

So, a second condition on the minimum of f on the left side of t0 = Z(ω) is:

lim
h→0

P(Z ≤ t0 − h) = 1− α i.e. t∗∗ = sup{t : P(Z ≤ t) ≤ 1− α} (25)

And finally, the minimum of f in this case is attained on the interval [t∗, t∗∗].

Once we have proved that, we can use this result to prove the other important result:
the link between the Expected Shortfall and the Conditional Value-at-Risk. The result is the
following it is a part of the theorem 6.2 of [2].

Proposition 2.10. Let Z ∈ L1(Ω,F ,P) and H(z) its cumulative distribution function, with
H(z) continuous at z = V ARα(Z), we have the following identities:

CV ARα(Z) =
1

α

∫ 1

1−α
V AR1−τ (Z)dτ = E(Z|Z ≥ V ARα(Z)) (26)

Proof. As we have just proved, the minimum of CV ARα(·) is attained at t∗ = V ARα(Z).
Therefore, we have:

CV ARα(Z) = t∗ + α−1E[(Z − t∗)+] = t∗ + α−1

∫ +∞

t∗
(z − t∗)dH(z)

Moreover, provided that P(Z = t∗) = 0, i.e. H(z) is continuous at z = V ARα(Z), we have:

α−1

∫ +∞

t∗
(z − t∗)dH(z) = α−1

∫ +∞

t∗
zdH(z)− α−1

∫ +∞

t∗
t∗dH(z)

= α−1

∫ +∞

t∗
zdH(z)− α−1t∗P(Z ≥ t∗)

= α−1

∫ +∞

t∗
zdH(z)− α−1t∗(1− P(Z ≤ t∗))

= α−1

∫ +∞

t∗
zdH(z)− α−1t∗α

= α−1

∫ +∞

t∗
zdH(z)− t∗

By the substitution τ = H(z), this shows the first equality in 2.10 and then the second
equality in 2.10 follows provided that P(Z = t∗) = 0.
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3 Numerical Experiments
In order to quantify the effect of the previous theoretical results, different risk measures are
tested. Three different measures of uncertainties are tested on test functions mainly from [13].
These measures are Robust Counterpart, mean-variance measure and the Average Value-at-
Risk measure described in Section 1.5. Tests are made for different class of uncertainties.
When it is possible the robust minimum is given according to the measure used and in case
where it is relevant some figures in 1 and 2 dimensions are provided to show the result.

3.1 Class B uncertainties: the quadratic sphere
The test function is really simple:

f(x) = ||x||2 =
n∑
i=1

x2
i (27)

3.1.1 The Robust Counterpart approach

In this case of uncertainties of class B, we have:

FRC(x; ε) = sup
||δ||≤ε

(x+ δ)2 (28)

= sup
||δ||≤ε

(
||x||2 + 2xT δ + ||δ||2

)
= (||x||+ ε)2 (29)

The robust minimizer is attained at x∗ = 0.

3.1.2 The mean-variance approach

Assuming that δ ∼ N (0, I) (or equivalently that each δi follows a standard normal law), we
have for the expectation:

E[f(x+ δ)] = E[
n∑
i+1

(xi + δi)
2] (30)

=
n∑
i=1

E[x2
i + 2δixi + δ2

i ] by linearity of the expectation (31)

=
n∑
i=1

x2
i + 1 (32)

= ||x||2 + n (33)

And for the variance we have:

V ar[f(x+ δ)] = 4||x||2 + 2n (34)
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The minimizers for the expectation and the variance are exceptionally the same : x∗ = 0.
Thus, in this special case, there is no need of weighted sum or pareto front. We can see that
is was also the same that for the robust counterpart approach.

3.1.3 The Average Value-at-Risk approach

Assuming that δ ∼ N (0, I) (or equivalently that each δi follows a standard normal law), we
have:

V ARα(f(x+ δ)) = inf

{
t : P

(
n∑
i=1

(xi + δi)
2 ≤ t

)
≥ 1− α

}
(35)

Since [13], we know also that:

Z =
n∑
i=1

(xi + δi)
2 ∼ X ′2n (||x||2) (36)

where X ′2n (||x||2) is a non central chi-squared distribution with n degrees of freedom and a
non centrality parameter equal to ||x||2. The cumulative distribution function of X ′2n (||x||2)
is equal to [20]:

P(Z ≤ t) = 1−Qn
2
(||x||,

√
t) (37)

with Q the Marcum-Q function. Moreover, in [28], the authors prove in Theorem 1 that this
function is strictly increasing in ||x|| for all t > 0 and n > 0. Then, we can deduce that:

P(
n∑
i=1

(xi + δi)
2 ≤ t) < P(

n∑
i=1

(δi)
2 ≤ t) (38)

and thus that:

inf{t : P(
n∑
i=1

(xi + δi)
2 ≤ t) ≥ 1− α)} ≥ inf{t : P(

n∑
i=1

(δi)
2 ≤ t) ≥ 1− α} (39)

By integration we obtain finally that ∀x ∈ Rn:

CV ARα(f(x+ δ)) ≥ CV ARα(f(δ)) (40)

So, with this measure the robust minimizer is attained at x∗ = 0.

3.2 Class B uncertainties: Function with multiple minima
The function on which we are going to test the different risk measures is drawn on Figure 2
and its formulation is:

f(x) = 1− exp

(
−1

2
x2

)
− exp

(
− 1

50
(x− 7)2

)
− exp

(
−5(x+ 5)2

)
. (41)
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This function has two local minima at x = −5 and x = 7 and one global minimum at
x = 0. In this example, we draw the different function to optimize according to the risk
measure used. That allow us to understand the behavior of the function to optimize. The
robust minimum of this function is considered to be at x = 7.

Figure 2: Test function

3.2.1 The Robust Counterpart approach

In this case, we search to optimize the following function:

FRC(x; ε) = sup
|δ|≤ε

(f(x+ δ)) (42)

We draw the result function for ε = 1 on the figure 3. As we can see on the figure, the
robust counterpart approach does not allow to choose really which minimum is the robust
minimum.

3.2.2 The mean-variance approach

In this case, we have to calculate the following function for different values of β:

FMV (x) = (1− β)E[f(x+ δ)] + βV ar[f(x+ δ)] (43)
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Figure 3: Robust Counterpart Approach

We recall here that β = 0 correspond to the case where the variance is not taken into
account. In the contrary, take β = 1 corresponds to take into account only the variance. In
order to present the different curves, we assume that δ ∼ N (0, 1). For each point, we draw
1000 samples of f(x+δ) and then we compute the mean and the variance to draw the curves.

On the figure 4, the result is quite different according to the value of β. There are three
main matters:

• In case where β is quite big, the addition of the variance create some maxima in the
function to optimize. This is a big problem because, these maxima are create near local
minima of the deterministic function.

• In case where β is too small, the minimum of the mean variance function is still located
at x = 0, we would like to locate it at x = 7.

• The great differences in the behavior of the robust mean variance function are confus-
ing. It is quite difficult to know which β we must choose.
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Figure 4: Mean-Variance approach for different values of beta

3.2.3 The Average Value-at-Risk approach

The result of the process described above and applied to Average Value-at-Risk measure is
presented on Figure 5. We draw it for different values of 1− α which we call the robustness
indices. This index has the same signification for the objective function that the reliability
index used in the reliability based design optimization for the constraints.

The result shows several things:

• First, for all the values of 1 − α considered, the AV ARα approach leads to the robust
minimum.

• In contrary to the mean variance approach, the behavior of the Average Value-at-Risk
measure does not introduce some maxima. The robust function stays quite close to the
original one in any cases.

• Finally, there is a phenonenon very interesting which appears. For β = 0.9, the result
of the Average Value-at-Risk measure applied to the test function is quasi convex. It is
obvious this phenomenon appears for some particular value of σ and β. However, we
come back on this phenomenon in the next section.

To sum up, if we take some proper values for β, then the Average Value-at-Risk measure
may identify the true robust minimum without having a behavior too far away of the original
test function. In addition, it would seem that the non robust minima may be transformed in
kind of ”levels”, and the function to optimize becomes then quasi convex.
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Figure 5: Average Value-at-Risk measure

3.3 Class A uncertainties: the sphere model
In this section, we test the different measure on the uncertainties of class A. We consider the
following function:

f(x, ν) = −a+ (ν + 1)||x||β − bν, β > 0, ν ∈ R (44)

In the contrary to [13] where they consider a maximization process. In our case, we are
interesting in a minimization, that is why we take the opposite of their original function.

3.3.1 The Robust Counterpart Approach

The robust counterpart function of f is the function:

FRC(x, ε) = sup
|ν|≤ε

f(x, ν) (45)

= sup
|ν|≤ε
{−a+ ||x||β + ν(||x||β − b)} (46)

=

{
−a+ bε+ (1− ε)||x||β if ||x||β ≤ b
−a− bε+ (1 + ε)||x||β if ||x||β > b

(47)

In the case of minimization on R, the solution is located when ||x||β ≤ b and its depends
on the value of ε. We have:

min
x

FRC =

{
−a+ bε if 0 ≤ ε ≤ 1,
−a+ b if ε > 1.

(48)
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The solutions are x∗ = 0 for the case where 0 ≤ ε ≤ 1 and ||x||∗ = b
1
β for the case where

ε > 1.

3.3.2 The mean-variance approach

In this section we suppose that the sochastic uncertainties ν follow a centred distribution with
a fixed variance denoted ε2. In this case, we can write:

FMV = (1− β)E[f(x, ν)] + βV ar[f(x, ν)] (49)

= β(−a+ ||x||β) + (1− β)ε2(−b+ ||x||β)2 (50)

Here, as it was the case in the second example of type B uncertainties, the optimum of the
variance and of the expectation does not coincide. Moreover, we can see that the optimum of
the expectation does not depend on ν, we have always: x∗ = 0. For the variance, we find the
same optimum that in the case where ε > 1 in the robust counterpart approach: ||x∗|| = b

1
b .

3.3.3 The Average Value-at-Risk approach

In this case we assume that ν follows a standard normal distribution. In that case, we have,
for ||x||β 6= b:

V ARα(f(x, ν) = inf{t : P(f(x, ν) ≤ t) ≥ 1− α} (51)

= inf{t : P
(
ν ≤ t+ a+ ||x||β

|b− ||x||β|

)
≥ 1− α} (52)

If we denote Φ the cumulative distribution function of the standard normal law, then:

V ARα(f(x, ν) = inf{t : Φ

(
t+ a− ||x||β

|b− ||x||β|

)
≥ 1− α} (53)

= −a+ ||x||β + Φ−1(1− α)|b− ||x||β| (54)

And thus we obtain by integration:

CV ARα(f(x, ν)) = −a+ ||x||β +
1

α
|b− ||x||β|

∫ 1

1−α
Φ−1(τ)dτ (55)

If we note:

I(α) =
1

α

∫ 1

1−α
Φ−1(τ)dτ (56)

then, rearranging the term, we obtain:

CV ARα(f(x, ν)) =

{
−a+ bI(α) + (1− I(α))||x||β if ||x||β < b
−a− bI(α) + (1 + I(α))||x||β if ||x||β > b

(57)

This formulation is very similar to the one in 47, and according to the value of I(α), we can
obtain the exact same solutions that in the robust counterpart approach. Moreover, the fact
that 1−α is our robustness index allows us to understand the link between this index and the
minimum that we obtain.
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3.4 Class A uncertainties: function “f2
In this section, we consider the robust minimization of:

f2(x, ν) = −a+
(xn−1 + ν)2 +

∑n−2
i=1 x

2
i

x2
n + b

+ x2
n, b > 0, x ∈ Rn (58)

with type A uncertainties.

3.4.1 The Robust Counterpart approach

The robust counterpart function of f2 is:

FRC(x, ε) = −a+ x2
n +

∑n−2
i=1 x

2
i

x2
n + b

+
1

x2
n + b

max
ν∈[−ε,ε]

(xn−1 + ν)2 (59)

= −a+ x2
n +

∑n−2
i=1 x

2
i

x2
n + b

+
(|xn−1|+ ε)2

x2
n + b

(60)

By calculation [13], the optimum is obtained at

x∗ =

{
0 if ε ≤ b

(0, ..., 0,±
√
ε− b) if ε > b

(61)

In fact, for ε ≤ b, the minimum is located at x = 0 and otherwise there are two minima
located. According to the level of uncertainties the robust counterpart function changes from
an unimodal to a bimodal function.

3.4.2 The Mean-Variance approach

In this section, the uncertaities are assumed to follow a centred distribution with a fixed
variance denoted ε2. Then:

FMV = (1− β)E[f(x, ν)] + βV ar[f(x, ν)] (62)

= (1− β)

(
−a+

∑n−1
i=1 x

2
i + ε2

x2
n + b

+ x2
n

)
+ β

(
4x2

n−1ε
2 + 2ε4

(x2
n + b)2

)
(63)

In case, where β = 0, the authors of [26] have shown that the FMV function yields the same
result as in the robust counterpart approach.

3.4.3 The Average Value-at-Risk approach

In this section, we suppose that ν follows a standard normal distribution, we have:

V ARα(f(x, ν)) = inf {t : P(f(x, ν) ≤ t) ≥ 1− α} (64)

= inf

{
t : P

(
− a+

(xn−1 + ν)2 +
∑n−2

i=1 x
2
i

x2
n + b

+ x2
n ≤ t

)
≥ 1− α

}
(65)
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As in 3.3.3, we can rewrite the probability such that:

P
(

(xn−1 + ν)2 ≤ (t+ a− x2
n)(x2

n + b)− r
)

with r =
n−2∑
i=1

x2
i (66)

In the case where (t + a − x2
n)(x2

n + b) − r < 0, this probability is null. However, that
contradicts the fact that probability must be greater than 1− α. Then, t will be choosen such
that this quantity was non negative, that is why, we can write:

P
(
|xn−1 + ν| ≤

√
(t+ a− x2

n)(x2
n + b)− r

)
(67)

Then, we have two cases:

V ARα(f(x, ν)) =

{
inf{t : Φ(

√
(t+ a− x2

n)(x2
n + b)− r − xn−1) ≥ 1− α} if ν + xn−1 ≥ 0

inf{t : Φ(
√

(t+ a− x2
n)(x2

n + b)− r + xn−1) ≥ 1− α} if ν + xn−1 < 0

(68)

=

{
−a+ x2

n + (Φ−1(1−α)+xn−1)2+r
x2n+b

if ν + xn−1 ≥ 0

−a+ x2
n + (Φ−1(1−α)−xn−1)2+r

x2n+b
if ν + xn−1 < 0

(69)

= −a+ x2
n +

(|xn−1|+ Φ−1(1− α))2 +
∑n−2

i=1 x
2
i

x2
n + b

(70)

3.5 Convexification phenomenon: the 2D case
In this section, we try to apply the Average Value-at-Risk risk measure on a function of two
variables. The test function used in this purpose is the Branin function:

f(x, y) = (y − 0.1291845091× x2 + 1.591549431× x− 6)2 + 9.602112642× cos(x) + 10

We draw this function on Figure 6.

Figure 6: Branin function: certain (right) and uncertain (left) level set
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Then, we assume that x and y are random variables following the following distributions:
X ∼ N (x, 1) and Y ∼ N (y, 1). We apply the Average Value-at-Risk on this function to
obtain the result on Figure 6. The convexification phenomenon appeared on it, nevertheless,
the function does not seem become quasi convex as it was the case on the 1-D tests. However,
we think that with a greater standard deviation, we could have got a quasi convex function.

3.6 Smoothing phenomenon
Another interesting phenomenon appears using the CVAR approach is the smoothing phe-
nomenon. Indeed, let consider the following non smooth function:

f(x) = |x|+ |x+ 3|+ |x− 3| (71)

Assumiong that X ∼ N (x, σ) with σ ∈ [0.2, 0.1, 0.05, 0.02] and using CV ARα with α =
0.9, the graph obtained are presented on the Figure 7.

Figure 7: Exemple of non smooth function: full (left) and a zoom (right)

On this graph, it seems that the CV ARα(f(X)) function be smoother than the original
function at the different point of non differentiability. This phenomenon is not very notice-
able, nevertheless that is due to the small value of the standard deviation used here.

3.7 Concluding remarks on the numerical experiments
Thanks to the previous experiments, we may notice several things:

• The Average Value-at-Risk measure, which is a coherent risk measure (as showed in
Section 2), seems to have an interesting behavior in practice compared to the mean
measure and the mean-variance risk measure. Indeed, it creates no additional maxima
and seems to convexity the function on which it is applied. The last result is particularly
interesting in design optimization.

• We apply the Average Value-at-Risk risk measure on non smooth and non convex func-
tion, two phenomenons appear: convexification and smoothing. Even if it is less clear,
this phenomenon appears also for function with multiple variables.

25



• Through, the different experiments, we have found three parameters which have an
influence on this phenomenon: the value of σ, the value of the index of robustess α
(through the β2 parameter) and the form of the width of the different “gap” of the
function.

The next section has for purpose to bring a theoretical base to this phenomenon of convexifi-
cation.

4 Additional properties of CVAR(f)
During the different numerical experiments, two interesting phenomenon have been ob-
served:

• A convexification of the function f : in all our numerical experiments, the CV ARα

function applied to f is locally quasi convex for a certain α.

• A smoothing of the function f : in the different numerical experiments, the CV ARα

function applied to f seems to be of class C1.

In this section, this two phenomenon are described formally and proved.

4.1 The convexification phenomenon
We try to show the following result:

Proposition 4.1. Let assume that:

• f is locally Lipschitz.

• The random variable X has a continuous probability distribution.

Then, there exists α such that CV ARα ◦ f() be locally quasi convex.

Proof. The proof will be made in three steps: first prove that CV ARα ◦ f tends to sup f
when α → 1, then prove that sup f is locally quasi convex and finally prove that a function
tending to a quasi convex function is quasi convex from a certain rank.

First, the function CV ARα ◦ f verify the following inequalities, let x ∈ Df

V ARα(f(x)) ≤ CV ARα(f(x)) ≤ sup f(x) (72)

And we know that:

V ARα(f(x)) = inf{t : P(f(x) ≤ t) ≥ 1} (73)
= inf{t : P(f(x) ≤ t) = 1} (74)
= sup f(x) (75)
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Thus, by the squeeze theorem, we have :

lim
α→1

CV ARα(f(x)) = sup f(x). (76)

Then, let r > 0, x̄ ∈ Df and consider the ball Br(x̄) = {x ∈ Df , ||x − x̄|| < r}. Let prove
that sup f(x) is locally quasi convex. For that, it is sufficient to prove that, ∀a ≥ 0, the set:

A(x) = {x ∈ Br(x̄); sup f(x) ≤ a} is convex. (77)

Let x, y ∈ A(x), let λ ∈ [0, 1], we have by continuity of f :

sup f(λx+ (1− λ)y) ≤ λ sup f(x) + (1− λ) sup f(y) = sup f(x) (78)

Finally, we must prove the following lemma:

Lemma 4.2. Let f be a quasi convex function and fα converge simply to f , then fα is quasi
convex from a certain rank.

Indeed, let assume that ∀α, fα be not quasi convex, then there exist x, y ∈ Df and λ ∈
[0, 1] such that:

fα(λx+ (1− λ)y) > max{f(x), f(y)} (79)

Thus, passing this inequality to the limit, we find that f is not quasi convex, which con-
tradicts the assumption.

4.2 The smoothing phenomenon
We try to show the following result:

Proposition 4.3. Let assume that:

• f is locally Lipschitz.

• The random variable X has a continuous probability distribution and we denote H the
cumulative distribution function of X .

• Some assumptions to be able to invert E and ∂
∂X

operators.

Then, there exists α such that CV ARα ◦ f() be differentiable.

Proof. This proof is not yet finished, it is just to give some ideas and ask about its correctness.

First, the CV ARα ◦ f() function may be written as:

CV ARα(f(X)) = t∗ + α−1E[(f(X)− t∗)+]
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with t∗ = V ARα(X) = H−1(1 − α). Now, the differential of CV AR ◦ f() may be written
as:

∂

∂X
CV ARα(f(X)) = α−1 ∂

∂X
E[(f(X)− t∗)+] (80)

= E[
∂

∂X
(f(X)− t∗)+] (81)

thanks to the third assumption. Moreover, knowing that the function (f(·) − t∗)+ is locally
Lipschitz, it is differentiable almost everywhere in the neighbourhood of x ∈ Rn. Now, let
assume that (f(·) − t∗)+ was differentiable everywhere in the neighborhood of x0 ∈ Rn

except at x0. Then, can we affirm that E[(f(x0) − t∗)+] is differentiable at x0 if and only if
the event X = x0 has zero probability ? (as they do page 376 of [2]) ?

5 Handling the constraints
Two communities handle constraint under uncertainties with two different names for the same
principle at the origin: reliability based design optimization and chance constrained optimiza-
tion.

5.1 Reliability based design optimization
Definition 5.1. According to [6], reliability based design optimization (RBDO) is the concept
ensuring that a solution of a problem with uncertainty is feasible with a probability greater
or equal to a certain rate of safety.

Mathematically, this amounts to solving the following optimization problem:

minimize
x, d

f(X, d, P )

subject to gj(X, d, P ) ≤ 0, j = 1, . . . , J,

xl ≤ x ≤ xu,

dl ≤ d ≤ du.

(82)

Here, X is a set of random vectors to be optimized. In the rest of this section, we will
consider that X follows a normal distribution N(µx, σx) where µx is the mean vector and
σx is the covariance matrix. This may not be the most common case in reality, but it is the
easiest way to understand the different methods inherent in reliable optimization problems.
Likewise, P is a vector of random parameters (which are not to be optimized) according
to the normal distribution N(µp, σp). The vectors d correspond to the set of deterministic
variables which are to be optimized. So, the stochasticity of the problem comes from the two
sets of vectors: X and P . The problem is posed in such a way that X and d are the vectors to
be optimized, nevertheless in RBDO µx and d are often the real decision variables. Finally,

28



we only consider inequality constraints because if an equality constraint implied X or P the
problem might not have a solution. An example of reliable optimization is shown on the
Figure 8.

Figure 8: Example of relibility optimization process

To reach this solution, problem (1) can be transformed into a new optimization problem.
Since the objective function f and the constraints gj are probabilistic due to the randomness
of the variables X and P , a new deterministic formulation can be written:

minimize
x, d

f(µx, d, µp)

subject to Pj(gj(x, d, p) ≤ 0) ≤ Rj j = 1, . . . , J,

xl ≤ µx ≤ xu,

dl ≤ d ≤ du.

(83)

The term P () corresponds to the probability of satisfying the constraint gj . The quantity Rj

is the desired reliability rate, it is fixed between 0 and 1. The transformation of the constraint
gj into a probabilistic constraint is a standard technique. Nevertheless, finding the law of
probability for which a constraint is satisfied is a complex mathematical problem. Even more,
when it comes to finding the joint probability law allowing to satisfy with a certain degree
of reliability the set of probabilistic constraints. The next section shows different ways to
effectively approximate this probability.
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5.2 Tools to approximate a unique probabilistic constraint
Mathematically, the conversation for a solution X to be reliable with respect to the j th con-
straint can be written (1− Pj) with:

Pj(µx, d, µp) =

∫
gj(µx,d,µp)<0

φµx,µp(x, p)dxdp (84)

where Pj is the probability of failure and φµx,µp is the joint probability density of (X,P ).
It is, in most cases, impossible to have an analytical formula of this integral for any con-
straint. This prompted the researchers to develop two approximation procedures: a statistical
approximation by sampling and an optimization procedure to estimate the distance to the
constraint.

5.2.1 Sampling approximation

In this procedure [6], given that we assume the joint probability distribution of X and P
is known, we create N different samples. For each sample, the constraint gj is evaluated
and it is observed whether there is a violation or not. If in rj case on N the constraint is
not respected then the probability of failure is approximated by Pj =

rj
N

and therefore the
probability constraint P (gj(x, d, p) ≥ 0) can be replaced by:

1− rj
N
≥ Rj (85)

The advantage of this approach is its simplicity of implementation and the fact that it can
be extended to several constraints very easily (you just have to see if the samples are feasible
with respect to all the constraints). Nevertheless, this procedure is very costly in terms of
computation time, in fact to have a precision of the order of 10−6 a number of samples of
the order of N = 106 is needed. Techniques have been used to reduce this cost but this may
not be sufficient if high reliability is desired. This process may be ipmproved by using Latin
Hypercube sampling (LHS) [18], Importance Sampling (IS) [14] or Directional Sampling
[8].

5.2.2 Optimization approximation

The idea, on which the various methods of approximation by optimization are based, is com-
mon to all the methods: seek to determine a point on the frontier of the constraint which is
closest to the solution. This point is called MPP (Most Probable Point) [15]. To find this
point, a reliability index βj is calculated as follows:

βj = φ−1(Rj) (86)

with the probability of failure Pj which is approximated by:

Pj = φ(−βj) (87)
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Where φ() is the probability density of the standard normal distribution. βj can be seen as
the margin of safety that is wished when the system is in its average state. Formulas 86 and
87 are correct under two conditions:

• That the elements of X are uncorrelated and that they follow a standard normal dis-
tribution. To establish this condition, we transform the vector X into a random vector
according to a standard normal distribution U by applying the Rosenblatt transforma-
tion [24] for example.

• That the boundary of the failure constraint is an hyperplane, which is very rarely the
case. To fulfill this condition, we approximate the failure surface by its hyperplane
tangent at the MPP point in the U space using its first-order expansion of its Taylor
series (this is called a FORM method (First Order Reliability Method)).

Our matter therefore comes down to calculating the MPP, there exists several procedures
as it is exposed below.

5.2.2.1 Performance measure approach (PMA)

To find the MPP with the PMA method, the following optimization problem is solved [5]:

minimize Gj(U)

subject to ||U || = βj.
(88)

with Gj() the constraint gj translated into the space U (typically by taking φ−1(gj())). The
solution of 88 is a point U∗ which is on the circle of radius βj and which minimizesGj(U). In
the initial problem 83, the probabilistic constraint is then replaced by the following constraint:

Gj(U
∗) ≥ 0. (89)

Figure 9 illustrates the operation of PMA in a two-dimensional case.
Although the problem 88 involves an equality constraint, a custom algorithm can be used

to consider only the solutions on the ||U || = βj hyper surface. By using this algorithm the
search for solutions becomes faster (since they are all feasible).

5.2.2.2 Reliability Index Approach

In this method, the following optimization problem is solved [5]:

minimize ||U ||

subject to Gj(U) = 0.
(90)

Here, the MPP is calculated by finding the point on the surface of the constraint in the space
U which is closest to the origin (which is the mean state of the system because all the random
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Figure 9: Example of PMA process [6]

variables of x have been translated into variables of u according to standard normal distribu-
tions). The optimal point found U∗ is used to replace the probabilistic constraint in formula
(2) as follows:

||U || ≥ βj. (91)

An illustration of this method is given in Figure 3. This method is more expensive than the
PMA method since it involves an equality constraint that cannot be managed as in the PMA
approach because it depends on the problem. But an advantage of this method is that it allows
through U∗ to have an approximate value of the distance of the solution to the constraint,
which can be interesting in some cases.

5.3 Methods for reliability based design optimization
The methods described above for measuring the reliability of a solution have been inserted
in several different ways into the optimization algorithm. Here is an overview of the most
common methods.

5.3.1 Double-Loop Methods

The double-loop method [17] uses two loops: an outer loop to optimize the original problem
given in 83 with (X, d) as decision vectors. Then, for each solution considered by the outer
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Figure 10: Example of RIA process [6]

loop, a second loop (the inner loop) is launched and the probabilistic constraint is solved
thanks to another optimization problem using PMA or RIA. This method is very costly com-
putationally speaking.

5.3.2 Single-Loop Methods

The single-loop [17] method combines the two optimization tasks together. It does not seek
to find the optimum for the probabilistic constraint but constitutes a procedure allowing to
find approximately the true MPP. For example in [17], the authors replace the original prob-
abilistic constraint by:

gj(x̄, p̄, d) ≥ 0 (92)

avec :
x̄ = µx − βjσ

∇xgj√
||∇xgj||2 + ||∇pgj||2

(93)

p̄ = µp − βjσ
∇pgj√

||∇xgj||2 + ||∇pgj||2
(94)

As the method is based only on an approximation, it often has difficulty finding precise
results, but it is computationally faster than the double-loop method.
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5.3.3 Decoupled Methods

In this method [10], two optimization problems (internal and external) are started one after
the other. The decoupled methods have shown a good compromise between the two previous
methods mentioned above. The principle is as follows: the algorithm starts by finding the
optimal deterministic solution in the search space (without considering any uncertainty on X
or on P and using the mean of X as the decision variable ). Then, the MPP is searched using
the PMA or RIA method. In the next iteration, each constraint is moved according to the
MPP point found in the previous iteration and the deterministic optimization of the moved
problem is solved. A pseudo code of a decoupled method (SORA) and an illustration of the
method can be found in Figure 11.

Figure 11: Pseudo code of SORA algorithm (left) and illustration (right) [6]

5.4 Handling several constraints
Ideally, the reliability of a solution should be calculated by considering the effect of all con-
straints. However, the methods we presented above (RIA and PMA) calculate the MPP for
one constraint at a time. There are several ways to extend this approach to multiple con-
straints, we present two below:

5.4.1 The closest constraint

The simplest way to consider the problem is to determine the probability of failure for each
constraint and to calculate the following bounds for the probability of failure according to the
set of constraints PF :

max
j
Pj ≤ PF ≤ min(1,

∑
j

Pj) (95)
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Intuitively, the greater the probability of failure for a constraint, the closer the constraint
is to the solution. Therefore, the lower bound is the probability of failure of the closest
constraint and is an underestimation of the probability of failure under all constraints. The
upper bound of PF is the case where none of the constraints overlap, and it is therefore an
overestimation in the other cases of the probability PF . This solution is a very simple estimate
which can lead to quite substantial errors but its advantage is the speed of the computation
times.

5.4.2 Ditlevsen bounds

More precise bounds can be given [7], this requires calculating all the failure probabilities
individually, the failure probability with respect to all the PF constraints can then be bounded
as follows:

P1 +
J∑
i=1

max(0, Pi −
i−1∑
j=1

Pij) ≤ PF ≤
J∑
i=1

Pi −
J∑
i=2

max
j|j<i

Pji. (96)

The formula depends on the ordering of the constraints but usually, the Pi are sorted
in descending order. So P1 and Pj correspond respectively to the greatest and the smallest
probability of failure. The joint probability Pij according to the ith and jth constraint is given
by the distribution function of the following bivariable normal distribution:

Pij = Φ(−βj,−βi, ρij) (97)

and the correlation coefficient rhoij is given by:

ρij =
< u∗j , u

∗
i >

||u∗j ||||u∗i ||
(98)

with u∗j the MPP in the space U for the jth constraint computed for the solution X . The
inverse cosine of ρij indicates the angle between the two u∗ vectors. Figure 12 illustrates this
procedure.

We make a linear approximation of each constraint at each MPP. Then once the MPPs
are calculated for all the stresses, the correlation coefficients ρij are the cosines of the angle
formed by the tangents to the MPPs of the jth and th constraints. The Ditvelsen bounds are
more precise than those given by the nearest constraint method, but this method involves cal-
culating all pairs of joined probabilities of failure. In problem (2), the probabilistic constraint
is then replaced by the upper bound of Ditvelsen, we thus obtain with the desired reliability
R:

1−
J∑
i=1

Pi −
J∑
i=2

max
j|j<i

Pji ≥ R (99)
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Figure 12: Process allowing to calculate the different correlation coefficients [6]

5.5 Advantages and drawbacks of RBDO
RBDO is a well studied subject and the different parts above are just an exposition of the
main methodologies used. However, these sections allow to understand the principle and
the assumptions made in the RBDO framework. Here is presented the advantages and the
drawbacks of this framework. First, the main advantages are:

• These methods have been developed for design optimization, thus they does not use
analytical properties of the constraints. In fact, in these methods the convexity or the
differentiability of the constraints are not supposed. The methods are thus adapted to
engineering design.

• The methods are intuitive, the different figures in the previous sections allow to under-
stand quickly the different concept and facilitate the implementation.

And the main drawbacks are:

• To my knowledge the Rosenblatt transformation necessitates to know the distribution
of the random variables in order to pass in the standard normal space.

• The approximation made using the FORM or SORM process may be really inaccurate
in a real engineering problem.

• This subject is very well studied and that lets few ways of improvement.
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5.6 Chance constrained optimization

6 Conclusion
There are several things to do:

• Complete the proof of smoothing phenomenon.

• Complete the chance constrained optimization part and explain what we propose to do
according to the advantages and drawbacks of the two methods presented.

• Add the third part about the application of our method in the MDO framework.
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