
Combining the Cross Entropy and the MADS
methods for

inequality constrained optimization

Charles Audet Romain Couderc Jean Bigeon ∗†

August 26, 2020

Abstract:
Keywords: Cross Entropy; MADS; Derivative-free optimization; Blackbox optimization;
Constrained optimization.

∗GERAD and Département de mathématiques et génie industriel, École Polytechnique de Montréal, C.P.
6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7.
†GSCOP 46 avenue Fĺix Viallet, 38000, Grenoble

1

mailto:Charles.Audet@gerad.ca
mailto:romain.couderc@grenoble-inp.fr
mailto:jean.bigeon@grenoble-inp.fr

Nomenclature
The next list describes symbols used within the body of the document.In what follows, if the
symbol is bold then it is a vector otherwise it is a scalar.

` The lower bound of a decision variable

∆k The frame size parameter at iteration k

δk The mesh size parameter at iteration k

ε The stopping criterion

γ A parameter to estimate in an associated stochastic problem

u The upper bound of a decision variable

E The expectation

N The normal distribution

V Set of parameters of a probability density function

X The bounded constraints set of type ` ≤ x ≤ u

µ The mean

Ω The feasible set

ρ A percentage of quantile

σ The standard deviation

τ The mesh size adjustment parameter

X A random vector

cj The jth constraint

D A positive spanning set

Ek The set of indices of elite points

F k The frame at iteration k

g(·; ·) A probability density function

h The measure of constraints violation

Ix Indicator function of x

2

k The iteration counter

Mk The mesh at iteration k

n The dimension of a problem

Ns Number of sampled data at each iteration

Ne Number of “elite” population

V The cache

v A parameter of a probability density function

3

1 Introduction
This work studies optimization problems of the form:

min
x∈Ω⊆Rn

f(x), f : x ∈ Rn → R (1)

with :
Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, ...,m}.

The set X represents bound constraints of type ` ≤ x ≤ u with `,u ∈ R̄n and R̄ =
R ∪ {±∞}. The specificity of this work is due to the form of the objective function f and
of the constraints cj . They can be the result of a simulation of complex physical phenomena.
However, these simulations can take an important amount of time or present some irregulari-
ties and therefore classical optimization methods are difficult to apply. Especially, when the
gradient of the objective function and/or of the constraints are not explicitly known, hard to
compute or its estimation is time consuming. This field is called derivative-free optimization
(DFO). In the worst case, the gradient does not even exist, which is called blackbox opti-
mization (BBO). Thus, specialized BBO and DFO algorithms have been developed in order
to solve this kind of problem.

There are two main categories: model based algorithms [13] and direct search algorithms
[5]. This work deals with direct search algorithms which benefit from theoretical conver-
gence results and adding some modifications may improve their performance. In particular,
the Mesh Adaptive Direct Search (Mads) algorithm [2] ensures convergence to a point satis-
fying necessary conditions based on the Clarke calculus [11]. This theoretical guarantee is a
solid basis for blackbox optimization. However, blackbox optimization algorithms must take
into account two other types of difficulties. First, algorithms must be efficient in terms of sim-
ulation evaluations (constraints and objective function). Indeed, the simulation in engineering
context is often time consuming. Second, blackbox simulations may involve multi-extrema
functions, so algorithms must be able to escape from local minimum. Mads may be trapped
in a local minimum.

To address the second difficulty, method were developed to escape from local minimum.
Several methods had already been combined with Mads for this purpose, including Variable
Neighborhood Search (VNS) [1] or Latin Hypercube Sampling (LHS) [39]. Furthermore,
many other methods of global optimization with no convergence guarantees exist, includ-
ing Simulated Annealing [14], Genetic Algorithm [17] or Tabu search [35]. However, these
heuristic methods often require a large number of function evaluations which is incompati-
ble with the first difficulty. In contrast, some methods have been developed to address the
first problem, by reducing the overall number of simulation evaluation such as: the use of
ensembles of surrogate [6] or of quadratic models [12] or the integration of Nelder-Mead
(NM) algorithm [8]. These different methods improve the efficiency of the Mads algorithm,
nevertheless, they do not address the difficulty of local optima.

4

This paper is divided as follow, Section 2 proposes an overview of Mads and Cross
Entropy method. Section 3 presents an algorithm combining CE and Mads. Finally, Section
4 shows the main numerical results comparing the proposed method with Mads, Mads-LHS
and Mads-VNS. Section 5 allow to conclude on the work that remains and the contribution
of this paper.

2 Description of Mads and Cross Entropy algorithms
In this Section, the Mads algorithm and the CE algorithm are described.

2.1 The Mads constrained optimization algorithm
The present work considers the Mads algorithm with the progressive barrier (PB) [3] to
handle inequality constraints and with dynamic scaling [7] to handle the varying magnitudes
of the variables. The target class of optimization algorithm is (1). The PB uses the constraint
violation function [15].

h(x) :=

m∑
j=1

(max{cj(x), 0})2 if x ∈ X ⊂ Rn

∞ otherwise

The constraints violation function value h(x) is equal to 0 if and only if the point x be-
longs to Ω and is nonnegative otherwise.

Mads is a direct search algorithm. Each iteration includes two steps. The SEARCH step
where various strategies can be used to explore the space of variables and the POLL step where
the space of variable is locally explored by following strict rules guaranteeing convergence.
In practice, the search accelerates the convergence to an optimum and it may attempt to
escape from local minimum. The POLL is confined to a region delimited by the so called poll
size vector ∆k ∈ Rn

+. All points generated by the POLL and SEARCH steps are rounded on
a discretization of the space of the variables called the mesh whose the fineness is controlled
by the mesh size vector δk ∈ Rn

+. In its simplest form, the mesh [7] is defined as follows:

Mk = V k + {diag(δk)z : z ∈ Zn}

where the cache V k contains all the points visited by the start of iteration k. The mesh and
the poll size vectors are updated at the end of each iteration. The values of both vectors
are reduced when an iteration fails to improve the current solution and they are increased or
remain at the same value otherwise. Algorithm 1 provides a description of Mads, the reader
may consult [7] for more details.

The fundamental convergence result [3] of the Mads algorithm states that if the entire
sequence of trial points belongs to a bounded set then there exists an accumulation point
x∗ such that the generalized directional derivative f ◦(x∗; d) of Clarke [11] is nonnegative in

5

Algorithm 1: The Mesh Adaptive Direct Search algorithm (Mads)
Given a user-defined set of starting point: V 0 ⊂ Rn,
and initial mesh and poll size vectors: typically δ0

i = ∆0
i = 1 for i = 1, 2, . . . , n.

Set the iteration counter: k ← 0.
1. Search step (optional):

Launch the simulation on a finite set Sk of mesh points.
If successful, go to 3.

2. Poll step:
Launch the simulation on the set P k of poll points.

3. Updates:
Update the cache V k+1, the incumbent xk+1

and the mesh and poll size vectors δk+1 and ∆k+1.
Increase the iteration counter k ← k + 1 and go to 1.

every hypertangent [21] direction d to the domain Ω at x∗ provided that x∗ is feasible. A
similar result holds for h over X in situation where the iterates never approach the feasible
region. In the present work, we will see in Section 3 how to keep this convergence guarantee.

2.2 The Cross Entropy method for continuous optimization
The Cross Entropy method was introduced by Rubinstein in 1997 in the context of a mini-
mization algorithm for estimating probabilities of rare events [37]. Later, it was modified to
solve combinatorial optimization problems [38] and then in 2006 to solve continuous prob-
lems [24]. The main idea of this method is as follows. First, each optimization problem
must be transformed in a rare event estimation problem called associated stochastic problem
(ASP): the deterministic problem (1) is transformed into the related stochastic estimation
problem:

l(γ) = P (f(X) ≥ γ) = E(If(X)≥γ) (2)

where X is a random vector. Then, this ASP must be tackled efficiently by an adaptive
algorithm. This algorithm constructs a sequence of solutions which converges to the optimal
solution of the ASP. Therefore, there are two iterative steps:

• generation a sample of random data according to a density of probability;

• updating the parameters of the density thanks to the data sampled to create a “better”
sample in the next iteration.

The main advantage of this method is that it allows to escape from local minima.

6

2.2.1 An introductory example

For clarity, consider the example from [24] of maximizing the function:

f(x) = e−(x−2)2 + 0.8e(x+2)2 , x ∈ R. (3)

The function f has two local maxima and a single global maximum at x = 2.

Figure 1: (Image taken from [24]) Graph of objective function f (left) and evolution of the
normal law during the seven first iterations with Ne = 10 and Ns = 100 (right)

Using a normal distribution the CE procedure is the following:

• Initialization : at the first iteration k = 0, a mean µ0 ∈ Rn and a standard deviation
σ0 ∈ Rn (with n the dimension of the problem) are arbitrarily chosen. A large value
of σ0 is taken in order to escape from local solutions.

• Iterative part: at each iteration k ≥ 1:

– First, a sample X1, ...,XNs of points in Rn is generated from a normal law V(µk−1,σk−1)
where Ns is the number of samples.

– Then, f is evaluated at each sampled points and a number of “elite” points Ne,
with the highest value of f. µk and σk are the mean and standard deviation of
these Ne points.

– Termination: once the standard deviation becomes sufficiently small, the proce-
dure is stopped.

If N denotes the normal distribution then N will evolve as in Figure 2. This example shows
how the CE procedure escapes from the local maximum and converges in seven iterations to
the neighborhood of 2.

7

2.2.2 The general CE method

Before presenting the algorithm, the ASP is considered and the two iterative steps of the
algorithm are precised. Problem (1) is transformed into an ASP. With this purpose, a family
of probability distribution function (pdf) {g(·; v) : v ∈ V} is defined. g is the law chosen to
sample the different points at each iteration. V is the set of vector parameters of the pdf g
which are calculated at each iteration. In the previous example g is the normal law and V is
the set of vk = (µk,σk). Therefore, the ASP related to (1) as follows:

l(γ) = Pv(f(X) ≥ γ) = Ev(I{f(X)≥γ}) (4)

where v ∈ V is a vector of parameter and X is a random vector with a pdf g(·; v). γ is a
variable. At this stage, for a given value of γ, the parameter v may be estimated. Conversely,
given a vector of parameters v, γ may be also estimated. The CE method is based on these
two estimations, at each iterations, the algorithm tries to estimate one then the other one. In
Example (3), in the iterative part, the first item corresponds to the estimation of γ and the
second one to the estimation of v. More precisely, we denote γ∗ ∈ R as the supremum of the
objective function, v∗ the parameters and g(·; v∗) the pdf associated to this supremum. Then
our goal is to generate a sequence of (γk, vk) which converge to (γ∗, v∗). To achieve this
goal, a sequence of pdf g(·; v0), g(·; v1), ... which converges to g(·; v∗) is created. To assure
the convergence, one must have a “measure” of the difference between the iterate pdf g(·; vk)
and the objective one g(·; v∗). The Kullback-Leibler (KL) divergence [25] is used:

D(g(·; v∗)||g(·; vk)) =

∫ ∞
−∞

g(x; v∗) ln

(
g(x; v∗)
g(x; vk)

)
dx. (5)

The iterative steps may now be described. ρ is defined as a very small quantity, corre-
sponding to the proportion of “elite” points which are kept from an iteration to another. The
procedure is:

• Adaptive update of γk. With a fixed parameter of pdf vk−1, γk is defined such that it
is the (1− ρ)-quantile of f(X) under vk−1. Then :

Pvk−1(f(X) ≥ γk) ≥ ρ, (6)

Pvk−1(f(X) ≤ γk) ≥ 1− ρ (7)

where X ∼ g(·; vk−1). The γk is denoted γ̂k. To obtain this estimator, a sample
X1, ...,XNs is drawn from g(·; vk−1) and evaluated. Then, the (1− ρ) quantile is:

γ̂k = fd(1−ρ)ne. (8)

• Adaptive update of vk. With a fixed γk and knowing vk−1, vk is a solution of:

max
v
D(v) = max

v
Evk−1I{f(X)≥γk} ln(g(X; v))

= min
v
Evk−1I{f(X)≥γk} ln

(
I{f(X)≥γk}

g(X; v)

) (9)

8

which is the minimization of the KL divergence at iteration k (taking the convention
0 ln(0) = 0). Nevertheless, in practice, the real expectation and the real γk are not
known, estimators must be used and the following equation is solved rather:

ṽk ∈ max
v
D̂(v) = max

v

1

N

N∑
i=1

I{f(Xi)≥γ̂k} ln(g(Xi; v). (10)

Last but not least, v̂k is not set to ṽk. Indeed, some component of ṽk could be set to 0 or 1
at the first few iterations and the transition between ṽk−1 and ṽk could be discontinuous. To
avoid these problems, the following convex combination is rather used:

v̂k = αṽk + (1− α)v̂k−1 (11)

with 0 < α ≤ 1. Theoretically, we can use any distribution which converges in the neigh-
borhood where the global maximum is attained as normal, exponential or beta distribution.
Nevertheless, in practice, the updating step is quite simple with the normal distribution that
one chooses often this one. Therefore, the detailed algorithm is the following:

Algorithm 2: The Cross Entropy (CE) algorithm with a normal law pdf
Choose µ̂0 and σ̂0

Set the iteration counter: k ← 0.
Ns number of sampled data at each iteration
Ne number of elite population
α the parameter of convex combination
1. Estimation of γk:

Generate a random sample X1, ..,XNs from N(µ̂k−1, σ̂k−1) distribution.
Evaluation of the Ns points by the simulation and then go to 2.

2. CE step
Let Ek be the indices of the Ne best perfoming samples.
Set µ̃k = 1

Ne

∑
i∈Ek

Xi

and (σ̃k)2 = 1
Ne−1

∑
i∈Ek

(Xi − µk)2

3. Updates:
Apply the convex combinations:
µ̂k = αµ̃k + (1− α)µ̂k−1

σ̂k = ασ̃k + (1− α)σ̂k−1

Increase the iteration counter k ← k + 1 and go to 1.

9

3 The CE-MADS constrained optimization algorithm
This section now presents the CE-inspired MadsSEARCH step. Section 3.1 presents describes
how to handle constraints, the update of the meanµ and the standard deviation σ and the
condition to enter the CE search step. Section 3.2 presents the algorithm of the CE SEARCH

step.

3.1 The CE-search step
3.1.1 Handling the constraints

Section 2 presented the CE method for unconstrained optimization. In [24], the bound con-
strained case is treated using a truncated normal law and a penalty approach is used for
inequality constraints. In our work, the truncated normal law is also used to treat the bound
constraints. For the general inequality constraints, the penalty approach is also kept instead
of a method based on progressive barrier [3]. That allows to vary the method to handle the
constraints. When the algorithm must choose the elite sample, it uses the following function
Best (defined in [8] and recalled here). The definition relies on both the objective and the
constraint violation functions f and h.

Definition 3.1. The function Best : Rn × Rn 7→ Rn

Best(x, y) =

x if x dominates y or if h(x) < h(y),
y if y dominates x or if h(y) < h(x),

Older(x, y) Otherwise

returns the best of two points.

The function Older gives the point which was generated before the former one. Thanks
to this definition, CE may treat the general inequality constraints with the terminology used
in Mads.

3.1.2 Update of the mean and standard deviation

Three elements differ compared to classical CE method concerning the mean and the stan-
dard deviation. First, the elite points taken to compute the mean and the standard deviation
are not only the Ns points generated by the normal law. The elite points are chosen from the
cache at the iteration k, denotes V k ⊂ Rn, so any points generated by the Mads algorithm
may be selected. This set is ordered with the function Best, in order to select the Ne elite
points, it is sufficient to take the Ne first of points of V k.

Second, the mean and the standard deviation initialization procedure differs from the CE
method proceeds. Indeed, Mads always begins with a starting point, thus there is at least one

10

point in the cache (the set of evaluated points). Moreover, to avoid to field of exploration,
bounds are always added on the problem as follows (using x̄k the poll center at iteration k):

∀i ∈ [1, n] (`ki , u
k
i) =

(`i, ui) if ui 6=∞ and `i 6= −∞,

(x̄ki − 10×∆k
i , ui) if ui 6=∞ and `i = −∞,

(`i, x̄
k
i + 10×∆k

i) if ui =∞ and `i 6= −∞.
(12)

Once the problem has finite bound constraints, there are two cases to calculate the mean
and the standard deviation:

• In case where the number of points in the cache is too small to be relevant, i.e. less
point that the number of problem dimension, then the mean and the standard deviation
are determined such that:

µk = x̄k (13)

σk = 2(uk − `k) (14)

• In the others cases, the same calculations are made that in the original CE process:

µk =
1

Ne

∑
j∈Ek

Xj

σk = 2

√
1

Ne − 1

∑
j∈Ek

(Xj − µk)2

Third, to generate the point during the CE search, the truncated normal law was always
used with the bounds created in (12). Moreover, the “elite” points come not only from the
previous normal sampling but also of the other kind of search step. That gives a vector of
standard deviation which tends to zero very quickly, the other methods doing generally a
local search. That is why, to avoid that the standard deviation is calculated as in 11 with a
coefficient α = 0.7.

3.1.3 The condition to pass in the CE-SEARCH step

The goal of the CE method is to explore in few evaluations the space to determine the promis-
ing region. The number of evaluations used by the CE SEARCH step must be quite small. For
this purpose, the algorithm does not perform at each iteration the CE SEARCH step. The
standard deviation can be seen as a measure of the incertitude on the data, it is used to de-
fine the condition to pass through the CE SEARCH step. First, a new variable called σp is
introduced, it represents the incertitude measured the last time the algorithm passes through
the CE SEARCH step and generate some points. This variable is initialized to∞. Then, the
condition to pass in the CE SEARCH is the following:

||σk|| < ||σp|| (15)

11

This conditions means that the current incertitude is smaller than the previous one, the
interesting area is refined. Each time these conditions are respected, σp is updated with the
standard deviation obtained after the CE step. Last but not least, there is a special case. The
CE method being associate with Mads which is a local search, it is possible that the points
become rapidly close to each others, reducing the standard deviation. In some cases, that
reduces the chance to go out of an unfeasible field. Thus, in case where several iterations
of Mads algorithm are passed and the feasible region is not reached, then the CE- SEARCH
is launched with a mean equal to the best point and a standard deviation equal to 4 times
the difference between the lower and the upper bounds (which is 2 times the initial standard
deviation).

3.2 The complete algorithm
The CE SEARCH step of Mads algorithm is presented here:

Algorithm 3: The CE SEARCH step
1. Calculation of µk and σk :

if card(Ek) < n:
µk = x̄0

σk update with 14
else:

µk = 1
Ne

∑
j∈Ek

Xj

(σk)2 = 1
Ne−1

∑
j∈Ek

(Xj − µk)2

2. CE SEARCH

If ||σk|| < ||σp|| :
Generate a random sample X1, ..,XNs from N (µk, 2σk) distribution.
Evaluation of the Ns points by the simulation.
Update:
µk+1 = 1

Ne

∑
j∈Ek

Xj

(σk+1)2 = 1
Ne−1

∑
j∈Ek

(Xj − µk+1)2

(σp)2 = (σk+1)2

12

4 Computational experiments

0 200 400 600 800 1,000

0

20

40

60

80

Number of (n+ 1) evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

0 200 400 600 800 1,000

0

20

40

60

80

Number of (n+ 1) evaluations
P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-5

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

Figure 2: Result of calibration of the hyper-parameter of CE-MADS on the 69 unconstrained
test problems

The present work uses data profiles to compare the different algorithm. Data profiles [33]
allow to assess if algorithms are successful in generating solution values close to the best
objective function values. To identify a successful run, a convergence test is required. Let
denote xe the best iterates obtained by one algorithm on one problem after e evaluations,
x0 the first feasible iterates (if it exists otherwise the test is failed) and f ∗ the best solution
obtained by all tested algorithms on all run instances of that problem. Then, the problem is
said to be solved within the convergence tolerance τ when:

f(x0)− f(xe) ≥ (1− τ)(f(x0)− f ∗)

Different initial points constitute different problems. Moreover, an instance of a problem cor-
responds to a particular pseudo-random generator seeds. The horizontal axis of a data profile
represents the number of evaluations for problems of fixed dimension, and represents group
of n + 1 evaluations when problems of different dimension are involved. The vertical axis
corresponds to the proportion of problems solved within a given tolerance τ . Each algorithm
has its curve to allow comparison of algorithms capability to converge to the best objective
function value.
This section presents the numerical experiments. It is divided in two subsections. The nu-
merical experiments of Section 4.1 are performed on analytical test problems to calibrate the

13

CE-SEARCH parameters. Section 4.2 compares Mads, LH-Mads, VNS-Mads and CE-Mads
without the use of models on three real engineering problems.

4.1 Preliminary experiments to calibrate parameters
Computational experiments are conducted using the version 3.9.1 of NOMAD [26] software
package. All tests use the Mads strategy with the use of the NM search [8] and without the
use of models. In addition, in case of using the CE-SEARCH, it is used as the first SEARCH

step.

0 200 400 600 800 1,000

0

20

40

60

Number of (n+ 1) evaluations

P
er
ce
n
ta
ge

of
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

0 200 400 600 800 1,000

0

10

20

30

Number of (n+ 1) evaluations

P
er
ce
n
ta
ge

of
p
ro
b
le
m
s
so
lv
ed

TAU 1E-5

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

Figure 3: Result of calibration of the hyper-parameter of CE-MADS on the 25 constrained
test problems

Numerical experiments on analytical test problems are conducted to set default values
to the two algorithmic parameters: the number of sampled data at each iteration Ns and the
number of “elite” population Ne. Mads-CE is tested on 100 analytical problems from the
optimization literature. The characteristics and sources of these problems are summarized
in Table 1 in appendix B. The number of variables ranges from 2 to 60; 28 problems have
constraints other than bound constraints. In order to have a more precise idea of the difference
between the hyper-parameter (ne and ns), three series of tests have been made:

• A series of tests on the 69 unconstrained test problems having a dimension from 2 to
20, with a number maximum of function evaluations of 21 000 and each problem is run
with 3 different random seeds.

14

• A series of tests on the 25 constrained test problems having a dimension from 2 to 20,
with a number maximum of function evaluations of 21 000 and each problem is run
with 3 different random seeds.

• A series of tests on the 6 bigger problem in term of dimension (from 50 to 60), three
are constrained and the three others are not.The maximum number of evaluations is set
to 61 000 and each problem is run with 3 different random seeds.

For each series of tests, the five following CE-MADS setup of hyper-parameters are com-
pared: (Ne, Ns) = {(2, n), (4, 2n), (6, 3n), (8, 4n), (10, 5n)} with n the dimension of the test
problem. A run of NOMAD default is also added in each series of test to calibrate our re-
sult with the current NOMAD software. The result are presented on Figure 2, 3 and 4 with
different values of τ .

These results are analysed by series of problems:

• On the unconstrained problems, no algorithm really stands out regardless of the value
of τ , it is difficult to choose one hyper-parameter rather than another one even if the
couple Ne = 4 and Ns = 2n seems to be more efficient.

• On the constrained problems, there is different behaviors according to the value of τ .
For τ = 10−3, no algorithm appears to be dominant. In the contrary for τ = 10−5,
it happens that greater is the value of Ns, higher is the percentage of problems solved
finally. That can be explained because a great Ns allows a better exploration of the
space, and so a more precise result at the end.

• Finally, on the large test problems, whatever the value of τ , and especially for small
value, the CE-Mads performs poorer than the Mads default algorithm. It seems that
the CE method is not useful for problems with large dimensions.

To conclude on the calibration of the hyper parameter of CE-Mads, two things are inter-
esting:

• The values of the hyper parameters is not very important in the performance of the CE-
Mads algorithm. That allows to avoid some calibration experiments before to apply
the algorithm on a new test problem.

• In case where you have a problem with a large dimension, it seems reasonable to avoid
the use of the CE-SEARCH. Nevertheless, this point has not been confirmed on real
engineering problems given that none engineering test problems have large dimension.

In the following of the paper, Ne = 4 and Ns = 2n are chosen because the CE-SEARCH

performs slightly better with these parameters.

15

0 200 400 600 800 1,000

0

20

40

60

80

Number of (n+ 1) evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-2

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

0 200 400 600 800 1,000

0

10

20

30

40

50

60

Number of (n+ 1) evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ns = 1*n Ne = 2

Mads 3.9.1 no models + CE Ns = 2*n Ne = 4

Mads 3.9.1 no models + CE Ns = 3*n Ne = 6

Mads 3.9.1 no models + CE Ns = 4*n Ne = 8

Mads 3.9.1 no models + CE Ns = 5*n Ne = 10

Figure 4: Result of calibration of the hyper-parameter of CE-MADS on the 6 “large” test
problems

4.2 Test on engineering problems
In this section, the CE-Mads algorithm is tested on three different engineering problems. Its
results are compared with three algorithms: the Mads-default (without models), the VNS-
Mads where a VNS-SEARCH is used and the LH-Mads which is a default Mads with in
addition a LHS search. The comparison with the two last algorithms is crucial because they
are methods aiming to explore the space of design variables.

4.2.1 The MDO problems

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads are tested to solve a
simple multidisciplinary wing design optimization problem [16]. Each initial point defines a
MDO problem. Solving the problem consists in maximizing the range of an aircraft subject
to 10 general constraints. The problem has 10 scaled design variables bounded in [0; 100].
Figure 5 shows the result on a data profile when solving 20 MDO problems on different initial
points using 3000 function evaluations or less. The initial points are real randomly selected
within the bounds. Each run is done with three different seeds in order to minimize the impact
of the seed.

On the plots, whatever the value of τ the CE-Mads outperforms the other algorithms.

16

0 500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

80

100

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-2

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

0 500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

80

100

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

Figure 5: Result on the 20 MDO test problems between Mads (no models), CE-Mads, VNS-
Mads and LH-Mads for τ = 10−2 (left) and τ = 10−3 (right).

4.2.2 The STYRENE problems

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads algorithms are tested
to optimize a styrene production process [1]. This problem is a simulation of a chemical
process. This process relies on a series of interdependent calculation of blocks using com-
mon numerical tools as Runge-Kutta, Newton, fixed point and also chemical related solver.
The particularity of this problem is the presence of “hidden” constraints, i.e. sometimes
the process does not finish and just return an error. In the case where the chemical process
ends, the constraints (not hidden) and the objective functions may be evaluated during a post-
processing. The objective is to maximize the net value of the styrene production process with
9 industrial and environmental regulations constraints.

In this work, a STYRENE problem possesses eight independent variables influencing the
styrene production process. The variables considered during the optimization process are all
scaled and bounded in X = [0, 100]8. As it was done for the MDO test problems, the four
algorithms are tested with 20 different starting points taken inX . A maximal number of eval-
uations of 3000 is used and each problem is run with three different seeds. The STYRENE
problems is particularly interesting in this study, because there are two minima as it is shown
in [8]. The results with τ = 10−1 allow to know the percentage of problems having found the
global minimum. The results are provided on the Figure 6. On the left plot, it is interesting
to notice that the CE-Mads algorithm find the global minimum the same number of times
that the LH-Mads algorithm but is really more efficient. On the right plot, the CE-Mads al-
gorithm seems to have the same accuracy that the VNS-Mads algorithm and is slightly more
efficient.

17

0 500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-1

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

0 500 1,000 1,500 2,000 2,500 3,000

0

5

10

15

20

25

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-2

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

Figure 6: Result on the 20 STYRENE test problems between Mads (no models), CE-Mads
and LH-Mads for τ = 10−1 (left) and τ = 10−2 (right).

4.2.3 The LOCKWOOD problems

Finally, the Mads default (no models), LH-Mads and CE-Mads algorithms without quadratic
models are tested to solve the basic version of a pump-and-treat groundwater remediation
problem from Montana Lockwood Solvent Groundwater Plume Site [28]. The problem has
6 design variables bounded in X = [0, 20000]6 and 4 constraints. A particularity of this
problem is that each simulation run take several seconds, so a maximum number of blackbox
evaluations of 1500 is used in the contrary to the others problems. We started from 20 dif-
ferent initial points randomly selected in X and three different seeds are used as previously.
The results are provided on the figure 7.

In this problem, reach the feasible region is not easy. Here again, the results at τ = 10−1

allows to give an idea of the number of times the algorithm reach the feasible region. For in-
stance, CE-Mads and LH-Mads always reach the feasible region while Mads default reaches
the feasible only 41 times on 60 instances and VNS-Mads only 46 times. The efficiency of
CE-Mads and LH-Mads is comparable. However, on the right plot, a better accuracy is
reached with a greater efficiency by the CE-Mads algorithm.

5 Discussion
This paper introduces a way to combine the CE algorithm and the Mads algorithm so that it
allows a better space exploration. This is achieved by defining a CE-SEARCH step within the
Mads algorithm. The CE SEARCH generates some points according to a normal distribution

18

0 200 400 600 800 1,000 1,200 1,400 1,600

0

20

40

60

80

100

Number of evaluations

P
er
ce
n
ta
ge

of
p
ro
b
le
m
s
so
lv
ed

TAU 1E-1

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

0 200 400 600 800 1,000 1,200 1,400 1,600

0

10

20

30

40

50

60

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-2

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

Figure 7: Result on the 20 LOCKWOOD test problems: between Mads-default (no models),
CE-Mads, VNS-Mads and LH-Mads for τ = 10−1 (left) and τ = 10−2 (right).

whose the mean and the standard deviation is calculated from the best points stored in the
cache. This approach allows to handle the constraints in a different ways. Moreover, the
particularity of this SEARCH is that it is not perform at each iteration of the Mads algorithm
but according to a criterion based on the value of the norm of the standard deviation of the
best points.

Numerical experiments show that in case where the problem has different minima or a
feasible region hard to reach, the CE-Mads algorithm performs well. Indeed, it attains as
often as the LH-Mads the feasible region or the global minimum but it is far more efficient,
especially when a tight accuracy is considered. Finally, it is even more surprising that for
problem, as MDO, on which the algorithm dedicated to explore the space have generally
poor performance, it performs really well. It seems to have the behavior of a local model
allowing to accelerate the convergence of the algorithm. Even if it is not the subject of this
paper, we have draw a comparison between CE-Mads without models and Mads default
(where the models are used). The results are provided on appendix on the Figure 8. On these
plots, the CE-Mads algorithm performs as well as Mads-default for a value of τ = 10−2. The
difference between the performance for τ = 10−3 is bigger. However, to compute the result
for the 60 instances of the problem CE-Mads take 1 minute and 30 seconds while Mads
take 1 hour and 12 minutes. It is 48 times more. Even if, in BBO the blackbox evaluations
are the most important part of the computing time, the difference of time is really huge for a
difference of performance quite tight.

Further works will be consecrated to improve the link between the Mads algorithm and
the CE algorithm.

19

A Appendix

0 500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

80

100

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-2

Mads 3.9.1 default

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

0 500 1,000 1,500 2,000 2,500 3,000

0

20

40

60

80

100

Number of evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

Mads 3.9.1 default

Mads 3.9.1 no models

Mads 3.9.1 no models + CE Ne = 4 Ns = 2n

Mads 3.9.1 no models + LH

Mads 3.9.1 no models + VNS

Figure 8: Result on the 20 MDO test problems: between Mads-default, Mads-default (no
models), CE-Mads, VNS-Mads and LH-Mads for τ = 10−2 (left) and τ = 10−3 (right).

20

B Appendix

Name Source n m Bnds
1 ARWHEAD10 [18] 10 0 no
2 ARWHEAD20 [18] 20 0 no
3 BARD [32] 3 0 no
4 BDQRTIC10 [18] 10 0 no
5 BDQRTIC20 [18] 20 0 no
6 BEALE [32] 2 0 no
7 BIGGS [18] 6 0 no
8 BOX [32] 3 0 no
9 BRANIN [19] 2 0 yes

10 BROWNAL5 [18] 5 0 no
11 BROWNAL7 [18] 7 0 no
12 BROWNAL10 [18] 10 0 no
13 BROWNAL20 [18] 20 0 no
14 BROWNDENNIS [32] 4 0 no
15 BROWN BS [32] 2 0 no
16 B250 [9] 60 1 yes
17 B500 [9] 60 1 yes
18 CHENWANG F2 X0 [10] 8 6 yes
19 CHENWANG F2 X1 [10] 8 6 yes
20 CHENWANG F3 X0 [10] 10 8 yes
21 CHENWANG F3 X1 [10] 10 8 yes
22 CRESCENT [3] 10 2 no
23 DISK [3] 10 1 no
24 DIFFICULT2 [3] 10 0 no
25 ELATTAR [27] 6 0 no
26 EVD61 [27] 6 0 no
27 FILTER [27] 9 0 no
28 FREUDENSTEINROTH [32] 2 0 no
29 GAUSSIAN [32] 3 0 no
30 G2 10 [4] 10 2 yes
31 G2 20 [4] 20 2 yes
32 G2 50 [4] 50 2 yes
33 GOFFIN 50 0 no
34 GRIEWANK [19] 10 0 yes
35 GULFRD 3 0 no
36 HELICALVALLEY [32] 3 0 no
37 HS19 [20] 2 2 yes
38 HS78 [27] 5 0 no
39 HS83 X0 [20] 5 6 yes
40 HS83 X1 [20] 5 6 yes
41 HS114 X0 [27] 9 6 yes
42 HS114 X1 [27] 9 6 yes
43 JENNRICHSAMPSON [32] 2 0 no
44 KOWALIKOSBORNE [32] 4 0 no
45 L1HILB [27] 50 0 no
46 MAD6 X0 [27] 5 7 no
47 MAD6 X1 [27] 5 7 no
48 MCKINNON [29] 2 0 no
49 MEYER [32] 3 0 no
50 MEZMONTES [30] 2 2 yes

Name Source n m Bnds
51 MXHILB [27] 50 0 no
52 OPTENG RBF [23] 3 4 yes
53 OSBORNE1 [32] 5 0 no
54 OSBORNE2 [27] 11 0 no
55 PBC1 [27] 5 0 no
56 PENALTY1 4 [18] 4 0 no
57 PENALTY1 10 [18] 10 0 no
58 PENALTY1 20 [18] 20 0 no
59 PENALTY2 4 [18] 4 0 no
60 PENALTY2 10 [18] 10 0 no
61 PENALTY2 20 [18] 20 0 no
62 PENTAGON [27] 6 15 no
63 PIGACHE X00 [34] 4 11 yes
64 PIGACHE X01 [34] 4 11 yes
65 POLAK2 [27] 10 0 no
66 POWELL BS [32] 2 0 no
67 POWELLSG4 [18] 4 0 no
68 POWELLSG8 [18] 8 0 no
69 POWELLSG12 [18] 12 0 no
70 POWELLSG20 [18] 20 0 no
71 RADAR [31] 7 0 yes
72 RANA [22] 2 0 yes
73 RASTRIGIN [19] 2 0 yes
74 RHEOLOGY [5] 3 0 no
75 ROSENBROCK [32] 2 0 yes
76 SHOR [27] 5 0 no
77 SNAKE [3] 2 2 no
78 SPRING X00 [36] 3 4 yes
79 SPRING X01 [36] 3 4 yes
80 SROSENBR6 [18] 6 0 no
81 SROSENBR8 [18] 8 0 no
82 SROSENBR10 [18] 10 0 no
83 SROSENBR20 [18] 20 0 no
84 TAOWANG F2 X00 [40] 7 4 yes
85 TAOWANG F2 X01 [40] 7 4 yes
86 TREFETHEN [22] 2 0 yes
87 TRIDIA10 [18] 10 0 no
88 TRIDIA20 [18] 20 0 no
89 TRIGONOMETRIC [32] 10 0 no
90 VARDIM8 [18] 8 0 no
91 VARDIM10 [18] 10 0 no
92 VARDIM20 [18] 20 0 no
93 WANGWANG F3 [41] 2 0 yes
94 WATSON9 [32] 9 0 no
95 WATSON12 [32] 12 0 yes
96 WONG1 [27] 7 0 no
97 WONG2 [27] 10 0 no
98 WOODS4 [18] 4 0 no
99 WOODS12 [18] 12 0 no

100 WOODS20 [18] 20 0 no

Table 1: Description of the set of 100 analytical problems.

21

References
[1] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization through Mesh Adap-

tive Direct Search and Variable Neighborhood Search. Journal of Global Optimization,
41(2):299–318, 2008.

[2] C. Audet and J.E. Dennis, Jr. Mesh Adaptive Direct Search Algorithms for Constrained
Optimization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[3] C. Audet and J.E. Dennis, Jr. A Progressive Barrier for Derivative-Free Nonlinear Pro-
gramming. SIAM Journal on Optimization, 20(1):445–472, 2009.

[4] C. Audet, J.E. Dennis, Jr., and S. Le Digabel. Parallel Space Decomposition of the Mesh
Adaptive Direct Search Algorithm. SIAM Journal on Optimization, 19(3):1150–1170,
2008.

[5] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series
in Operations Research and Financial Engineering. Springer International Publishing,
Berlin, 2017.

[6] C. Audet, M. Kokkolaras, S. Le Digabel, and B. Talgorn. Order-based error for man-
aging ensembles of surrogates in mesh adaptive direct search. Journal of Global Opti-
mization, 70(3):645–675, 2018.

[7] C. Audet, S. Le Digabel, and C. Tribes. Dynamic scaling in the mesh adaptive direct
search algorithm for blackbox optimization. Optimization and Engineering, 17(2):333–
358, 2016.

[8] C. Audet and C. Tribes. Mesh-based Nelder-Mead algorithm for inequality constrained
optimization. Computational Optimization and Applications, 71(2):331–352, 2018.

[9] A.J. Booker, E.J. Cramer, P.D. Frank, J.M. Gablonsky, and J.E. Dennis, Jr. Movars:
Multidisciplinary optimization via adaptive response surfaces. AIAA Paper 2007–1927,
2007.

[10] X. Chen and N. Wang. Optimization of short-time gasoline blending scheduling prob-
lem with a DNA based hybrid genetic algorithm. Chemical Engineering and Process-
ing: Process Intensification, 49(10):1076–1083, 2010.

[11] F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,
1983. Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series
Classics in Applied Mathematics.

[12] A.R. Conn and S. Le Digabel. Use of quadratic models with mesh-adaptive direct
search for constrained black box optimization. Optimization Methods and Software,
28(1):139–158, 2013.

22

[13] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to Derivative-Free Optimiza-
tion. MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[14] A. Coranan, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodel func-
tions of continuous variables with ”Simulated Annealing” algorithm. Transactions on
Mathematical Software, 13(3):262–280, 1987.

[15] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathe-
matical Programming, Series A, 91:239–269, 2002.

[16] A.A. Giunta. Aircraft Multidisciplinary Optimization using Design of Experiments
Theory and Response Surface Modeling Methods. PhD thesis, Virginia Tech, Hous-
ton, Texas, 1997; available as Tech. Rep. MAD 97-05-01, May 1997, Department of
Aerospace and Ocean Engineering, Virginia Tech, 215 Randolph Hall, Blacksburg, Vir-
ginia 24061.

[17] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[18] N.I.M. Gould, D. Orban, and Ph.L. Toint. CUTEr (and SifDec): A constrained and
unconstrained testing environment, revisited. ACM Transactions on Mathematical Soft-
ware, 29(4):373–394, 2003.

[19] A.-R. Hedar. Global Optimization Test Problems. http://www-optima.amp.i.
kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.
(last accessed on 2017-10-20).

[20] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes, vol-
ume 187 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin,
Germany, 1981.

[21] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer, Berlin, 1994.

[22] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global opti-
misation problems. International Journal of Mathematical Modelling and Numerical
Optimisation, 4(2):150–194, 2013.

[23] S. Kitayama, M. Arakawa, and K. Yamazaki. Sequential approximate optimization
using radial basis function network for engineering optimization. Optimization and
Engineering, 12(4):535–557, 2011.

[24] D. P. Kroese, S.Porotsky, and R. Y. Rubinstein. The Cross-Entropy method for con-
tinuous and multi-extremal optimization. Metodol Comput Appl Probab, 8:383–407,
2006.

[25] S. Kullback and R.Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:79–86, 1951.

23

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

[26] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
algorithm. ACM Transactions on Mathematical Software, 37(4):44:1–44:15, 2011.

[27] L. Lukšan and J. Vlček. Test problems for nonsmooth unconstrained and linearly con-
strained optimization. Technical Report V-798, ICS AS CR, 2000.

[28] L.S. Matott, A.J. Rabideau, and J.R. Craig. Pump-and-treat optimization using analytic
element method flow models. Advances in Water Resources, 29(5):760–775, 2006.

[29] K.I.M. McKinnon. Convergence of the Nelder-Mead simplex method to a nonstationary
point. SIAM Journal on Optimization, 9(1):148–158, 1998.

[30] E. Mezura-Montes and C.A. Coello. Useful Infeasible Solutions in Engineering Op-
timization with Evolutionary Algorithms. In Proceedings of the 4th Mexican Interna-
tional Conference on Advances in Artificial Intelligence, MICAI’05, pages 652–662,
Berlin, Heidelberg, 2005. Springer-Verlag.

[31] N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović. Solving spread
spectrum radar polyphase code design problem by tabu search and variable neighbour-
hood search. European Journal of Operational Research, 151(2):389–399, 2003.

[32] J.J. Moré, B.S. Garbow, and Kenneth E. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

[33] J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
Journal on Optimization, 20(1):172–191, 2009.

[34] F. Pigache, F. Messine, and B. Nogarede. Optimal Design of Piezoelectric Transform-
ers: A Rational Approach Based on an Analytical Model and a Deterministic Global
Optimization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, 54(7):1293–1302, 2007.

[35] P. Siarry R. Chelouah. A hybrid method combining continuous tabu search and Nelder-
Mead simplex algorithm for the global optimization of multiminima functions. Euro-
pean Journal of Operational Research, 161:636–654, 2005.

[36] J.F. Rodrı́guez, J.E. Renaud, and L.T. Watson. Trust Region Augmented Lagrangian
Methods for Sequential Response Surface Approximation and Optimization. Journal of
Mechanical Design, 120(1):58–66, 1998.

[37] R. Y. Rubinstein. Optimization of computer simulation models with rare events . Euro-
pean Journal of Operational Research, 99:89–112, 1997.

[38] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learn-
ing. Springer: Berlin Heidelberg, New York, USA, 2004.

24

[39] M. Stein. Large sample properties of simulations using latin hypercube sampling. Tech-
nometrics, 29(2):143–151, 1987.

[40] J. Tao and N. Wang. DNA Double Helix Based Hybrid GA for the Gasoline Blending
Recipe Optimization Problem. Chemical Engineering and Technology, 31(3):440–451,
2008.

[41] K. Wang and N. Wang. A novel RNA genetic algorithm for parameter estimation of
dynamic systems. Chemical Engineering Research and Design, 88(11):1485–1493,
2010.

25

	Introduction
	Description of Mads and Cross Entropy algorithms
	The Mads constrained optimization algorithm
	The Cross Entropy method for continuous optimization
	An introductory example
	The general CE method

	The CE-MADS constrained optimization algorithm
	The CE-search step
	Handling the constraints
	Update of the mean and standard deviation
	The condition to pass in the CE-search step

	The complete algorithm

	Computational experiments
	Preliminary experiments to calibrate parameters
	Test on engineering problems
	The MDO problems
	The STYRENE problems
	The LOCKWOOD problems

	Discussion
	Appendix
	Appendix

