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Problem statement

Problem of interest:

min
x∈Rn

f (x) f (x) :=
N∑
i=1

fi (x)

� large problems n> 103

� fi :R
n →R does not depend on all of x

� fi ∈C 2, i = 1, ..,N

Example:

min
x∈Rn

f1(x1,x2)+ fn(xn−1,xn)+
n−1∑
i=2

fi (xi−1,xi ,xi+1)
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De�nition

The linear operator Ui gives the (linear combination of) variables used by

fi :
f (x) =∑N

i=1 f̂i (Uix)

∇f (x) =∑N
i=1U

>
i ∇f̂i (Uix)

∇2f (x) =∑N
i=1U

>
i ∇2 f̂i (Uix)Ui

∇2f (x)≈B =∑N
i=1U

>
i B̂iUi

� f̂i : R
ni →R an element function

� Ui ∈Rni×n usually a linear operator far more e�cient than a matrix

� B̂i ∈Rni×ni , i = 1, ...,N

� If max
i={1,...,N}

ni ¿ n, store {B̂i }
N
i=1 requires (much) less memory than B

Theorem (Griewank and Toint [1982a])
Every problem having a sparse hessian is partially separable.
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Motivation for studying the PSS

The PSS allows partitioned QN updates (PQN) (Griewank and Toint

[1982b])

B =
N∑
i=1

Bi =
N∑
i=1

U>
i B̂iUi

� Apply QN update to each B̂i using Ui s and ∇f̂i (Ui (x +s))−∇f̂i (Uix)

�

∑N
i=1Bi still satis�es secant equation

� Advantages:

� does not increase memory requirements {B̂i }
N
i=1 ( 6= standard QN)

� keep the sparsity of B (6= L-BFGS)

� fully parallelizable: each B̂i update is independent: (Ui s , ŷi ) such

that ŷi =∇f̂i (Ui (x + s))−∇f̂i (Uix)

� rank update � 1 or 2
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Towards a complete optimization method

A trust-region method or a linesearch framework around the PQN update

leads us to solve a partitioned linear system at every iteration:

� Conjugate gradient (CG)

� require matrix-vector products: Bv =
(∑

U>
i
B̂iUi

)
v

� can compute B̂iUiv in parallel and assemble with U>
i

� (multi-)frontal factorization (Conn et al. [1994])

� Cholesky factorization dedicated to partitioned matrix

� {Ui }
N
i=1 provide the sparsity of B

� the permutation applied to the matrix is critical: front size, �lling,

parallelizable blocs

� partitioned trust-region method (Conn et al. [1996])
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E�cient derivatives computation

Reduce f (x)=∑N
i=1 f̂i (Uix) evaluation required to compute ∇f from

{∇f̂i }Ni=1 in case every f̂i (x) are evaluated at once and by using the

structure {Ui }
N
i=1.

f (x)=
5∑

i=1
fi (x)= 1>F (x)= f̂1(x1,x3)+f̂2(x1,x4)+f̂3(x2,x3)+f̂4(x2,x4)+f̂5(x3)

F (x)=


f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

 , ∇F =


ä 4
ä ¦

♦ 4
♦ ¦

4

 , Sc =


1 0

1 0

0 1

0 1


If ∇F is dense the seed S to compute ∇F is I4 implying 4 f evaluations.

The PSS {Ui }
N
i=1 induce graph structure whose a proper coloring de�ne

the compressed seed Sc implying 2 f evalutions.
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Automatic di�erentiation (AD)

Compute the derivative of a numerical procedure f :Rn →Rm

� Forward mode

� more e�cient than reverse if m> n

� memoryless method

� Reverse mode

� more e�cient than forward if m< n

� must build a tape of the numerical procedure.
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AD and PSS

� If every f̂i is available and evaluate at once a similar procedure to

compressed seed may be used (Bischof et al. [1997])

� If each f̂i is available individually:

� forward mode is more e�cient since ni ¿ n

� the tape of each f̂i is much smaller than f (smaller expression tree)

� in practice, f̂i = f̂j allowing to reduce the number of tapes needed

� Hessian-vector products ∇2 f̂i (Uix)Uiv combine both approaches and

their properties in PSS. It allows a complete parallel procedure to

compute ∇2f (x)v from
∑N

i=1U
>
i ∇2 f̂i (Uix)Uiv
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Other uses of PSS in the literature

� Dedicated crossover operator, the key of genetic algorithms (Durand

and Alliot [1998])

� Speci�c to DFO:

� Interpolations based on the knowledge of {f̂i }
N
i=1

� By interpolating each f̂i , ≈ n2
i
points instead of ≈ n2

� Reducing the {f̂i }
N
i=1 evaluations depending the structure to obtain

those n2
i
points

� Dedicated e�cient procedure to recompute f ,∇f if xk+1−xk is

sparse, only the f̂i ,∇f̂i impact must be recompute

� Brute Force Optimizer (BFO): (Porcelli and Toint [2021])
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Limitations

� Problem structure must be explicited by the modeler

� "if
∑
n2i ≥ n2: not applicable in large scale, require more space and

computation than BFGS, ex: f (x)=∑n
i=1 f̂i (x1,x2, ...,xi )

� Method to �nd a new basis to increase the sparsity of the problem

Kim et al. [2009]
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Historically

� Study of PSS is about 40 years old Griewank and Toint [1982a]

� During the last 40 years, work mainly done by Conn, Gould and Toint

� Resulting LANCELOT a Fortran software using the SIF format

� AMPL (commercial software) also uses the PSS and detects it

automatically.
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My work

� Provide modern software to detect PSS automatically:

� Assess convexity of the fi automatically

� Construct new optimization methods that exploit PSS

� 4 julia modules

� Make it easily usable (6= LANCELOT)

� Survey on PSS
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Module CalculusTreeTools.jl

� Detect PSS ({f̂i }
N
i=1, {Ui }

N
i=1) automatically from f

� Automatic strict convexity detection and bounds propagation

� Interfaced to JuMP, NLPModelJuMP, ADNLPModel
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Example

+

+

2

5

sin

+

x1 x2

-

×

x2 x3

2

+

x3 x4

f1(x)= 52 [5] constant non strictly convex

f2(x)= sin(x1+x2) [−1,1] nonlinear non strictly convex

f3(x)= x2×x3 [−∞,∞] quadratic non strictly convex

f4(x)=−(x3+x4)
2 [0,∞] quadratic non strictly convex
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Example

+

+

2

5

sin

+

x1 x2

-

×

x2 x3

2

+

x3 x4

U1 = 0 U2 =
(
1 0 0 0

0 1 0 0

)
or U2 =

(
1 1 0 0

)
U3 =

(
0 1 0 0

0 0 1 0

)

U4 =
(
0 0 1 0

0 0 0 1

)
or U4 =

(
0 0 1 1

)
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Module PartiallySeparableNLPModel.jl

� de�ne the algorithm structures around PSS

� Test problem Rosenbrock function (Rn →R)

Figure 1: PSF gradient t/n Figure 2: comparison ton AD t/n

16



Module PartiallySeparableSolver.jl

� Trust-region methods using partitioned-QN solved by CG

� 40 PS problems of size n= 1000

Figure 3: time Figure 4: obj+5grad
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Module PartitionedStructure.jl

� Dedicated to partitioned structured: vectors/matrices. Also somes

speci�city about PSS.

� Multi-frontal factorization implementation
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Improving axes

Currently a trust region using a P-BFGS update must solve at each

iterate the partitioned linear system:

Ax = b∑
i U

>
i ÂiUix =∑

i U
>
i b̂i

Âi = B̂i , b̂i =−∇f̂i ,x = s

The complexity of the whole method:

� PQN: update {B̂i }
N
i=1 (fully parallelizable, depend of ni )

� TR management is constant

� Solving the partitioned linear system: CG is state of the art
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Method to solve a partitonned linear system

The following properties must hold:

� Do not form B

� Be parallel

� To use it with a trust region an approximate solution is enough.

� The solution must be a descent direction

The ideal would be an iterative method that iteratively check TR

constraint (similar to CG).
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An other way to parallelize

In completely separable case solving each Âi x̂
i = b̂i , x

i ∈Rni solve
Ax = b. (

Â1 0

0 Â2

)(
x

)
=

(
b1

b2

)

� Plan to form a solution x from {x̂ i }2i=1 such that Âi x̂
i = b̂i

� Consequently each Âix
i = b̂i may be solve in parallel.

x =
(
x̂1

x̂2

)
(1)
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The cas of two overlapping blocs

Suppose Â1,Â2 ∈Rn1×n1 ,Rn2×n2 such that A ∈Rn×n.

Ax =

 Â11,1 Â11,2 0

Â12,1 Â12,2 + Â21,1 Â21,2

0 Â22,1 Â22,2

x =

 b̂11
b̂12 + b̂21

b̂22

= b

Suppose x̂1, x̂2 such that Âp x̂
p = b̂p , p = 1,2 and an approximation x? of

x∗ such that:

x? =

 x̂11
x̂?

x̂22

 x1 =
(
x11
x12

)
x2 =

(
x21
x22

)
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Consequently Ax?−b

Âp1,1 x̂
p
1
+ Âp1,2 x̂

p
2
= b̂p1

Âp2,1 x̂
p
1
+ Âp2,2 x̂

p
2
= b̂p2

Replace x̂p by Uix
?:

Â11,1 x̂
1
1 + Â11,2 x̂

1
2 + Â11,2(x̂

?− x̂12 )= b̂11
Â11,1 x̂

1
1 + Â11,2 x̂

1
2 − b̂11︸ ︷︷ ︸

=0

+Â11,2(x̂
?− x̂12 )= 0

Â12,1 x̂
1
1 + Â12,2 x̂

1
2 + Â12,2(x̂

?− x̂12 )= b̂12
Â12,1 x̂

1
1 + Â12,2 x̂

1
2 − b̂12︸ ︷︷ ︸+Â12,2(x̂

?− x̂12 )= 0

Â21,1 x̂
2
1 + Â22,1 x̂

2
2 + Â22,1(x̂

?− x̂21 )= b̂21
Â21,1 x̂

2
1 + Â22,1 x̂

2
2 − b̂21︸ ︷︷ ︸+Â22,1(x̂

?− x̂21 )= 0

Â22,1 x̂
2
1 + Â22,2 x̂

2
2 + Â21,1(x̂

?− x̂21 )= b̂22
Â22,1 x̂

2
1 + Â22,2 x̂

2
2 − b̂22︸ ︷︷ ︸+Â21,1(x̂

?− x̂21 )= 0
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A new problem

The residual Ax?−b is the following:

Ax?−b =−

 Â11,2(x̂
?− x̂12 )

Â12,2(x̂
?− x̂12 )+ Â21,1(x̂

?− x̂21 )

Â22,1(x̂
?− x̂21 )


This equation link x?, x̂? and a approximate solution Ax = b (ie Bs =−g).
We would like to minimize the residual Ax?−b; depending only of x̂?.

Remark: The optimum of this problem Ax?−b may be not null since the

approximate x? is arbitrary.
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Direct problem

min
x̂?∈Rninter

‖

 Â11,2(x̂
?− x̂12 )

Â12,2(x̂
?− x̂12 )+ Â21,1(x̂

?− x̂21 )

Â22,1(x̂
?− x̂21 )


︸ ︷︷ ︸

∈Rn

‖

� Problem dimension: n= n1+n2−ninter

� Variable dimension: ninter

� Directionnal derivative of x̂? are combination of Â1:,2 and Â2:,1
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Conclusions

An ongoing work:

� Still don't know how to solve this new problem

� May be extends to more than 2 blocs

� Litterature review about bloc matrix resolution (ADMM)
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