Partially separable structure (PSS) May 20, 2021

Paul Raynaud May 20, 2021

Polytechnique Montréal, Grenoble INP

Problem of interest:

$$\min_{x \in \mathbb{R}^n} f(x) \qquad f(x) := \sum_{i=1}^N f_i(x)$$

- large problems $n > 10^3$
- $f_i : \mathbb{R}^n \to \mathbb{R}$ does not depend on all of x
- $f_i \in \mathcal{C}^2, i = 1, .., N$

Example:

$$\min_{x \in \mathbb{R}^n} f_1(x_1, x_2) + f_n(x_{n-1}, x_n) + \sum_{i=2}^{n-1} f_i(x_{i-1}, x_i, x_{i+1})$$

Definition

The linear operator U_i gives the (linear combination of) variables used by f_i :

$$\begin{aligned} f(x) &= \sum_{i=1}^{N} \widehat{f}_i(U_i x) \\ \nabla f(x) &= \sum_{i=1}^{N} U_i^{\top} \nabla \widehat{f}_i(U_i x) \\ \nabla^2 f(x) &= \sum_{i=1}^{N} U_i^{\top} \nabla^2 \widehat{f}_i(U_i x) U_i \\ \nabla^2 f(x) &\approx B &= \sum_{i=1}^{N} U_i^{\top} \widehat{B}_i U_i \end{aligned}$$

•
$$\widehat{f_i}: \mathbb{R}^{n_i} \to \mathbb{R}$$
 an element function

- $U_i \in \mathbb{R}^{n_i \times n}$ usually a linear operator far more efficient than a matrix
- $\widehat{B}_i \in \mathbb{R}^{n_i \times n_i}, i = 1, ..., N$
- If $\max_{i=\{1,\dots,N\}} n_i \ll n$, store $\{\widehat{B}_i\}_{i=1}^N$ requires (much) less memory than B

Theorem (Griewank and Toint [1982a]) Every problem having a sparse hessian is partially separable.

The PSS allows partitioned QN updates (PQN) (Griewank and Toint [1982b])

$$B = \sum_{i=1}^{N} B_i = \sum_{i=1}^{N} U_i^{\top} \widehat{B}_i U_i$$

• Apply QN update to each \widehat{B}_i using $U_i s$ and $\nabla \widehat{f}_i(U_i(x+s)) - \nabla \widehat{f}_i(U_i x)$

- $\sum_{i=1}^{N} B_i$ still satisfies secant equation
- Advantages:
 - does not increase memory requirements $\{\widehat{B}_i\}_{i=1}^N \ (\neq \text{ standard QN})$
 - keep the sparsity of $B \ (\neq L-BFGS)$
 - fully parallelizable: each \hat{B}_i update is independent: $(U_i s, \hat{y}_i)$ such that $\hat{y}_i = \nabla \hat{f}_i(U_i(x+s)) \nabla \hat{f}_i(U_i x)$
 - \bullet rank update $\gg 1 \text{ or } 2$

A trust-region method or a linesearch framework around the PQN update leads us to solve a partitioned linear system at every iteration:

- Conjugate gradient (CG)
 - require matrix-vector products: $Bv = \left(\sum U_i^\top \widehat{B}_i U_i\right) v$
 - can compute $\widehat{B}_i U_i v$ in parallel and assemble with U_i^{\top}
- (multi-)frontal factorization (Conn et al. [1994])
 - Cholesky factorization dedicated to partitioned matrix
 - $\{U_i\}_{i=1}^N$ provide the sparsity of B
 - the permutation applied to the matrix is **critical**: front size, filling, parallelizable blocs
- partitioned trust-region method (Conn et al. [1996])

Efficient derivatives computation

Reduce $f(x) = \sum_{i=1}^{N} \hat{f}_i(U_i x)$ evaluation required to compute ∇f from $\{\nabla \hat{f}_i\}_{i=1}^{N}$ in case every $\hat{f}_i(x)$ are evaluated at once and by using the structure $\{U_i\}_{i=1}^{N}$.

$$f(x) = \sum_{i=1}^{5} f_i(x) = 1^{\top} F(x) = \hat{f}_1(x_1, x_3) + \hat{f}_2(x_1, x_4) + \hat{f}_3(x_2, x_3) + \hat{f}_4(x_2, x_4) + \hat{f}_5(x_3)$$

$$F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \\ f_4(x) \\ f_5(x) \end{pmatrix}, \quad \nabla F = \begin{pmatrix} \Box & \bigtriangleup & \checkmark \\ \Box & & \diamond \\ & \diamondsuit & \bigtriangleup \\ & & \diamond & \land \\ & & & \bigtriangleup \end{pmatrix}, \quad S_c = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

If ∇F is dense the seed S to compute ∇F is I_4 implying 4 f evaluations. The PSS $\{U_i\}_{i=1}^N$ induce graph structure whose a proper coloring define the compressed seed S_c implying 2 f evaluations. Compute the derivative of a numerical procedure $f : \mathbb{R}^n \to \mathbb{R}^m$

- Forward mode
 - more efficient than reverse if m > n
 - memoryless method
- Reverse mode
 - more efficient than forward if m < n
 - must build a tape of the numerical procedure.

- If every \hat{f}_i is available and evaluate at once a similar procedure to compressed seed may be used (Bischof et al. [1997])
- If each \hat{f}_i is available individually:
 - forward mode is more efficient since $n_i \ll n$
 - the tape of each $\widehat{f_i}$ is much smaller than f (smaller expression tree)
 - in practice, $\hat{f}_i = \hat{f}_j$ allowing to reduce the number of tapes needed
- Hessian-vector products ∇² f_i(U_ix)U_iν combine both approaches and their properties in PSS. It allows a complete parallel procedure to compute ∇² f(x)ν from Σ^N_{i=1} U^T_i∇² f_i(U_ix)U_iν

- Dedicated crossover operator, the key of genetic algorithms (Durand and Alliot [1998])
- Specific to DFO:
 - Interpolations based on the knowledge of $\{\hat{f}_i\}_{i=1}^N$
 - By interpolating each $\widehat{f}_i, \, \approx n_i^2$ points instead of $\approx n^2$
 - Reducing the $\{\widehat{f}_i\}_{i=1}^N$ evaluations depending the structure to obtain those n_i^2 points
 - Dedicated efficient procedure to recompute f, ∇f if x_{k+1} x_k is sparse, only the f̂_i, ∇f̂_i impact must be recompute
- Brute Force Optimizer (BFO): (Porcelli and Toint [2021])

- Problem structure must be explicited by the modeler
- \bigwedge if $\sum n_i^2 \ge n^2$: not applicable in large scale, require more space and computation than BFGS, ex: $f(x) = \sum_{i=1}^n \widehat{f_i}(x_1, x_2, ..., x_i)$
 - Method to find a new basis to increase the sparsity of the problem Kim et al. [2009]

- Study of PSS is about 40 years old Griewank and Toint [1982a]
- During the last 40 years, work mainly done by Conn, Gould and Toint
- Resulting LANCELOT a Fortran software using the SIF format
- AMPL (commercial software) also uses the PSS and detects it automatically.

- Provide modern software to detect PSS automatically:
 - Assess convexity of the f_i automatically
 - Construct new optimization methods that exploit PSS
 - 4 julia modules
 - Make it easily usable (≠ LANCELOT)
- Survey on PSS

- Detect PSS $({\{\widehat{f}_i\}_{i=1}^N, \{U_i\}_{i=1}^N})$ automatically from f
- Automatic strict convexity detection and bounds propagation
- Interfaced to JuMP, NLPModelJuMP, ADNLPModel

Example

 $\begin{aligned} f_1(x) &= 5^2 & [5] \\ f_2(x) &= sin(x_1 + x_2) & [-1,1] \\ f_3(x) &= x_2 \times x_3 & [-\infty,\infty] \\ f_4(x) &= -(x_3 + x_4)^2 & [0,\infty] \end{aligned}$

constant non strictly convex nonlinear non strictly convex quadratic non strictly convex quadratic non strictly convex

Example

$$U_{1} = 0 \quad U_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ or } U_{2} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ or } U_{4} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
$$U_{4} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ or } U_{4} = \begin{pmatrix} 0 & 0 & 1 & 1 \end{pmatrix}$$

15

Module PartiallySeparableNLPModel.jl

- define the algorithm structures around PSS
- Test problem Rosenbrock function $(\mathbb{R}^n \to \mathbb{R})$

Figure 1: PSF gradient t/n

Figure 2: comparison ton AD t/n

Module PartiallySeparableSolver.jl

- Trust-region methods using partitioned-QN solved by CG
- 40 PS problems of size n = 1000

- Dedicated to partitioned structured: vectors/matrices. Also somes specificity about PSS.
- Multi-frontal factorization implementation

Currently a trust region using a P-BFGS update must solve at each iterate the partitioned linear system:

$$Ax = b$$

$$\sum_{i} U_{i}^{\top} \widehat{A}_{i} U_{i} x = \sum_{i} U_{i}^{\top} \widehat{b}_{i}$$

$$\widehat{A}_{i} = \widehat{B}_{i}, \widehat{b}_{i} = -\nabla \widehat{f}_{i}, x = s$$

The complexity of the whole method:

- PQN: update $\{\widehat{B}_i\}_{i=1}^N$ (fully parallelizable, depend of n_i)
- TR management is constant
- Solving the partitioned linear system: CG is state of the art

The following properties must hold:

- Do not form B
- Be parallel
- To use it with a trust region an approximate solution is enough.
- The solution must be a descent direction

The ideal would be an iterative method that iteratively check TR constraint (similar to CG).

In **completely** separable case solving each $\widehat{A}_i \widehat{x}^i = \widehat{b}_i, x^i \in \mathbb{R}^{n_i}$ solve Ax = b. $\begin{pmatrix} \widehat{A}_1 & 0 \\ 0 & \widehat{A}_2 \end{pmatrix} \begin{pmatrix} x \end{pmatrix} = \begin{pmatrix} b^1 \\ b^2 \end{pmatrix}$

- Plan to form a solution x from $\{\hat{x}^i\}_{i=1}^2$ such that $\hat{A}_i \hat{x}^i = \hat{b}_i$
- Consequently each $\widehat{A}_i x^i = \widehat{b}_i$ may be solve in parallel.

$$x = \begin{pmatrix} \hat{x}^1 \\ \hat{x}^2 \end{pmatrix} \tag{1}$$

Suppose $\widehat{A}_1, \widehat{A}_2 \in \mathbb{R}^{n_1 \times n_1}, \mathbb{R}^{n_2 \times n_2}$ such that $A \in \mathbb{R}^{n \times n}$.

$$Ax = \begin{pmatrix} \hat{A}_{1_{1,1}} & \hat{A}_{1_{1,2}} & 0\\ \hat{A}_{1_{2,1}} & \hat{A}_{1_{2,2}} + \hat{A}_{2_{1,1}} & \hat{A}_{2_{1,2}}\\ 0 & \hat{A}_{2_{2,1}} & \hat{A}_{2_{2,2}} \end{pmatrix} x = \begin{pmatrix} \hat{b}_{1_1} \\ \hat{b}_{1_2} + \hat{b}_{2_1} \\ \hat{b}_{2_2} \end{pmatrix} = b$$

Suppose \hat{x}^1, \hat{x}^2 such that $\hat{A}_p \hat{x}^p = \hat{b}_p$, p = 1, 2 and an approximation $x^?$ of x^* such that:

$$x^{?} = \begin{pmatrix} \widehat{x}_{1}^{1} \\ \widehat{x}^{?} \\ \widehat{x}_{2}^{2} \end{pmatrix} \quad x^{1} = \begin{pmatrix} x_{1}^{1} \\ x_{2}^{1} \end{pmatrix} \quad x^{2} = \begin{pmatrix} x_{1}^{2} \\ x_{2}^{2} \end{pmatrix}$$

Consequently $Ax^{?} - b$

$$\widehat{A}_{p_{1,1}} \widehat{x}_1^p + \widehat{A}_{p_{1,2}} \widehat{x}_2^p = \widehat{b}_{p_1} \\ \widehat{A}_{p_{2,1}} \widehat{x}_1^p + \widehat{A}_{p_{2,2}} \widehat{x}_2^p = \widehat{b}_{p_2}$$

Replace \hat{x}^p by $U_i x^?$:

$$\underbrace{ \begin{aligned} & \widehat{A}_{1_{1,1}} \widehat{x}_1^1 + \widehat{A}_{1_{1,2}} \widehat{x}_2^1 + \widehat{A}_{1_{1,2}} (\widehat{x}^? - \widehat{x}_2^1) = \widehat{b}_{1_1} \\ & \widehat{A}_{1_{1,1}} \widehat{x}_1^1 + \widehat{A}_{1_{1,2}} \widehat{x}_2^1 - \widehat{b}_{1_1} + \widehat{A}_{1_{1,2}} (\widehat{x}^? - \widehat{x}_2^1) = 0 \\ & \underbrace{\widehat{A}_{1_{2,1}} \widehat{x}_1^1 + \widehat{A}_{1_{2,2}} \widehat{x}_2^1 + \widehat{A}_{1_{2,2}} (\widehat{x}^? - \widehat{x}_2^1) = \widehat{b}_{1_2} \\ & \widehat{A}_{1_{2,1}} \widehat{x}_1^1 + \widehat{A}_{1_{2,2}} \widehat{x}_2^1 - \widehat{b}_{1_2} + \widehat{A}_{1_{2,2}} (\widehat{x}^? - \widehat{x}_2^1) = \widehat{b}_{1_2} \\ & \underbrace{\widehat{A}_{2_{1,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,1}} \widehat{x}_2^2 - \widehat{b}_{1_2} + \widehat{A}_{2_{2,1}} (\widehat{x}^? - \widehat{x}_1^2) = \widehat{b}_{2_1} \\ & \widehat{A}_{2_{1,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,1}} \widehat{x}_2^2 - \widehat{b}_{2_1} + \widehat{A}_{2_{2,1}} (\widehat{x}^? - \widehat{x}_1^2) = 0 \\ & \underbrace{\widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2_{2,2}} \widehat{x}_2^2 - \widehat{b}_{2_2} \\ & \widehat{A}_{2_{2,1}} \widehat{x}_1^2 + \widehat{A}_{2$$

The residual $Ax^{?} - b$ is the following:

$$Ax^{?} - b = - \begin{pmatrix} \widehat{A}_{1_{1,2}}(\widehat{x}^{?} - \widehat{x}_{2}^{1}) \\ \widehat{A}_{1_{2,2}}(\widehat{x}^{?} - \widehat{x}_{2}^{1}) + \widehat{A}_{2_{1,1}}(\widehat{x}^{?} - \widehat{x}_{1}^{2}) \\ \widehat{A}_{2_{2,1}}(\widehat{x}^{?} - \widehat{x}_{1}^{2}) \end{pmatrix}$$

This equation link $x^{?}$, $\hat{x}^{?}$ and a approximate solution Ax = b (ie Bs = -g). We would like to minimize the residual $Ax^{?} - b$; depending only of $\hat{x}^{?}$.

Remark: The optimum of this problem $Ax^{?} - b$ may be not null since the approximate $x^{?}$ is arbitrary.

- Problem dimension: $n = n_1 + n_2 n_{inter}$
- Variable dimension: *n_{inter}*
- Directionnal derivative of $\widehat{x}^{?}$ are combination of $\widehat{A}_{1_{::2}}$ and $\widehat{A}_{2_{::1}}$

An ongoing work:

- Still don't know how to solve this new problem
- May be extends to more than 2 blocs
- Litterature review about bloc matrix resolution (ADMM)

References

- A Griewank and Ph Toint. On the unconstrained optimization of partially separable functions. In M. J. D Powell, editor, *Nonlinear Optimization 1981*, pages 301–312. Academic press, 1982a. Publication editors : M.J.D. Powell.
- A Griewank and Ph Toint. Partitioned variable metric updates for large structured optimization problems. 39:119–137, 1982b. doi: 10.1007/BF01399316.
- A Conn, N Gould, M Lescrenier, and Ph Toint. Performance of a multifrontal scheme for partially separable optimization. In *Advances in Optimization and Numerical Analysis*, pages 79–96. Springer, 1994. doi: 10.1007/978-94-015-8330-5_6.
- A Conn, N Gould, A Sartenaer, and Ph Toint. Convergence properties of minimization algorithms for convex constraints using a structured trust region. 6(4):1059–1086, 1996. doi:

https://doi.org/10.1137/S1052623492236481.

C Bischof, A Bouaricha, P Khademi, and J Moré. Computing gradients in large-scale optimization using automatic differentiation. 9:185–194, 1997. doi: https://doi.org/10.1287/ijoc.9.2.185.

- N Durand and J-M Alliot. Genetic crossover operator for partially separable functions. In *GP 1998, 3rd annual conference on Genetic Programming*, Madison, United States, 1998. URL https://hal-enac.archives-ouvertes.fr/hal-00937718.
- M. Porcelli and Ph Toint. Exploiting problem structure in derivative free optimization, 2021.
- S Kim, M Kojima, and Ph Toint. Recognizing underlying sparsity in optimization. 119(2):273–303, Jul 2009. ISSN 1436-4646. doi: 10.1007/s10107-008-0210-4. URL

https://doi.org/10.1007/s10107-008-0210-4.