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Introduction

Introduction

The problem

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) = 0
l ≤ x ≤ u

with
f : Rn → R ∪ {+∞} the objective function.
cj : Rn → R, j ∈ I the set of |I| inequality constraints (|I| ≥ 0)
cj : Rn → R, j ∈ E the set of |E| equality constraints (|E| ≥ 0).
l , u ∈ Rn the bound constraints on the variables (can be equal to ±∞ as long as
li < ui for i = 1, 2, . . . , n).

The functions f and cj for j ∈ E ∪ I are supposed to be blackboxes (ideally).
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Introduction

The MADS algorithm

MADS (Mesh Adaptive Direct Search) [Audet and Dennis, 2006] is an iterative (and
robust) method which:

Evaluates points on a mesh.
Iterates around two steps: the search (optional) and the poll.
Is guaranteed to converge to a local optimum under rather general assumptions (i.e.
locally Lipschitz functions).
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Introduction

The MADS algorithm and inequality constraints

The constraint violation function h [Audet and Dennis, 2009]
The constraint violation function h : Rn → R ∪ {+∞} is defined as

h(x) =


∑
j∈I

max(gj (x), 0)2 if x ∈ X ;

0 otherwise

where X is the set of relaxable constraints.

The PB-MADS algorithm [Audet and Dennis, 2009] deals with inequality constraints:
Via the use of the constraint violation h. At iteration k, all points above the
threshold hk

max are rejected
Each iteration is organized around a poll and a search (optional).
At each iteration, keeps a list of non-infeasible incumbents points and iterates
around them.
hk

max decreases toward the iterations.
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Relaxing the assumption on black-box equality constraints

A question

Are you a bit familiar with the notion of manifold ?
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Relaxing the assumption on black-box equality constraints

A question

Are you familiar with the notion of linear programming ?
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

Definition
In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a
topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia

Requires
The (analytical) knowledge of equality constraints.
A transformation mapping to solve the problem in a reduced dimension subspace.
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Blackbox optimization on manifolds

Definition
In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a
topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia

Requires
The (analytical) knowledge of equality constraints.
A transformation mapping to solve the problem in a reduced dimension subspace.

Example
Solve the following equality constraint blackbox problem

min
(x1,x2)∈R2

f (x1, x2)

s.t x2
1 + x2

2 = 1
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

Definition
In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a
topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia

Requires
The (analytical) knowledge of equality constraints.
A transformation mapping to solve the problem in a reduced dimension subspace.

Example
Solve the following equality constraint blackbox problem

min
(x1,x2)∈R2

f (x1, x2)

s.t x2
1 + x2

2 = 1
=⇒

and...hop!

min
θ

f (cos θ, sin θ)
θ ∈ [0, 2π]

=⇒
get

θ?

x?1 = cos θ?
x?2 = sin θ?
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

General litterature
Direct search methods on Riemannian
manifolds [Dreisigmeyer, 2006a, Dreisigmeyer, 2006b, Dreisigmeyer, 2007b].
Direct search methods over Lipschitz manifolds [Dreisigmeyer, 2007a].
Other [Dreisigmeyer, 2018, Dreisigmeyer, 2019].
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

General litterature
Direct search methods on Riemannian
manifolds [Dreisigmeyer, 2006a, Dreisigmeyer, 2006b, Dreisigmeyer, 2007b].
Direct search methods over Lipschitz manifolds [Dreisigmeyer, 2007a].
Other [Dreisigmeyer, 2018, Dreisigmeyer, 2019].

More specific
Direct search methods with linear equality
constraints [Audet et al., 2015, Lewis et al., 2006, Lewis and Torczon, 2010].
Direct search methods with spherical inequality constraints [Latorre et al., 2018].
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More general methods

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) = 0
l ≤ x ≤ u

=⇒

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) ≤ 0 and cE(x) ≥ 0
l ≤ x ≤ u
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=⇒

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) ≤ 0 and cE(x) ≥ 0
l ≤ x ≤ u

Inspiration
Engineering common sense.
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More general methods

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) = 0
l ≤ x ≤ u

=⇒

min
x∈Rn

f (x)
s.t cI(x) ≤ 0

cE(x) ≤ 0 and cE(x) ≥ 0
l ≤ x ≤ u

Inspiration
Engineering common sense.

Problem
Scaling: the algorithm can reject many points when the domain is too narrow.
Theory.
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More general methods

Extension of the constraint violation function to equality constraints

Inspiration
[Nocedal and Wright, 2006, Chapter 15]

Extend the constraint violation function for equality constrained problems
The constraint violation function h : Rn → R ∪+∞ is defined as

h(x) =


∑
j∈I

max(cj (x), 0)2 +
∑
j∈E

cj (x)2 if x ∈ X

0 otherwise

Presentation (9/19) MADS Mars 8th, 2021 9 / 19



More general methods

Extension of the constraint violation function to equality constraints

Inspiration
[Nocedal and Wright, 2006, Chapter 15]

Extend the constraint violation function for equality constrained problems
The constraint violation function h : Rn → R ∪+∞ is defined as

h(x) =


∑
j∈I

max(cj (x), 0)2 +
∑
j∈E

cj (x)2 if x ∈ X

0 otherwise

Problem
Equivalent to the first approach.
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More general methods

ε approach/restoration methods for derivative free optimization

Litterature
General framework [Martínez and Sobral, 2013].
Use of GSS [Bueno et al., 2013]
Use of derivative-free trust regions [Arouxét et al., 2015, Echebest et al., 2017]

General principle [Martínez and Sobral, 2013]
An iteration k is decomposed into two phases:

The Restoration phase. Find a point y k ∈ Ω satisfying the following condition

‖cE(y k )‖ ≤ εk

where Ω = {x ∈ Rn : l ≤ x ≤ u and cI(x) ≤ 0}
The Optimization phase. Starting from y k , solve approximatively the following
problem

min
x∈Ω

f (x)
s.t ‖cE(x)‖ ≤ εk

Update εk to εk+1 > 0, set k → k + 1 and repeat the two steps above.
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More general methods

ε approach/restoration methods for derivative free optimization

Some remarks

One can have one εk
i by equality constraints, i.e. εk ∈ Rp

+.
The two phases can be tackled by different algorithms, according to the nature of
the constraints (i.e. for example cj differentiable and/or cheap
constraints [Bueno et al., 2013, Martínez and Sobral, 2013])
Some variants solve a penalty subproblem in the Optimization phase mixing
constraints and objective functions [Arouxét et al., 2015, Echebest et al., 2017].

The penalty function [Bueno et al., 2013]
Given θ ∈ (0, 1), define the following penalty function:

φ(x , θ) = θ f (x) + (1− θ)‖cE(x)‖
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More general methods

ε approach/restoration methods for derivative free optimization

A very dumb idea (inspired by [Bueno et al., 2013, Martínez and Sobral, 2013])

Initialization. Let x0 ∈ [l , u] a starting point. Set k := 0 and θ0 ∈ (0, 1).
Step 1 : Restoration phase. If ‖cE(xk )‖ = 0, set yk := xk , and go to Step 2.
Else, execute a Mads iteration around xk to find a point yk satisfying
‖cE(yk )‖ < ‖cE(xk )‖. If success, go to Step 2. Otherwise, go to Step 4.

Step 2: Update penalty parameter. If φ(yk , θk )− φ(xk , θk ) ≤ 1
2 (‖cE(yk )‖ − ‖cE(xk )‖),

set θk+1 := θk . Otherwise, set

θk+1 :=
‖cE(xk )‖ − ‖cE(yk )‖

2(f (yk )− f (xk ) + ‖cE(xk )‖ − ‖cE(yk )‖)

Step 3 : Optimization phase. Execute a Mads iteration around yk to find point x trial such
that

φ(x trial , θk+1)− φ(xk , θk+1) ≤
1
2

(‖cE(xk )‖ − ‖(cE(yk )‖).

If x trial satisfies the conditions, set xk+1 := x trial ; otherwise set xk+1 := yk . Go to Step 4.
Step 4: Update parameter. Update the mesh size and frame size parameter as for the
traditional MADS algorithm. Set k := k + 1.
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More general methods

Penalty function approach

Litterature
Exact penalty methods (for inequality
constraints): [Di Pillo et al., 2016, Fasano et al., 2014, Liuzzi and Lucidi, 2009].
Non exact penalty methods: [Griffin and Kolda, 2010, Price, 2020]

Idea

min
x∈Rn

f (x)
s.c cI(x) ≤ 0

cE(x) = 0
l ≤ x ≤ u

=⇒ min
x∈[l,u]

Z1(x , ρ) or min
x∈[l,u]

Z2(x , ρ)

where

Z1(x , ρ) = f (x) + ρ

(∑
j∈I

max(0, cj (x)) +
∑
j∈E

|cj (x)|

)
, ρ > 0

and

Z2(x , ρ) = f (x) + ρ

(∑
j∈I

max(0, cj (x))2 +
∑
j∈E

cj (x)2
)
, ρ > 0.
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More general methods

Penalty function approach

Remarks
One can also let the inequality constraints in the original constraints.
In derivative-free optimization literature, convergence results have been given in the
case where:

1 The objective function and the inequality constraints (no equality constraints) are
Lipschitz continuous [Di Pillo et al., 2016] for the l1 penalty function.

2 The exactness of the l1 penalty function has been equally proved in the case where the
objective function and the constraints functions are locally Lipschitz (φ, η)
invex [Antczak, 2019].

Presentation (11/19) MADS Mars 8th, 2021 11 / 19



More general methods

Penalty function approach variant

Idea (given by Orban/Conn)
Reformulate the original problem:

min
x∈Rn,s∈Rp

+

f (x) + ρ
∑p

i=1 si

s.t cI(x) ≤ 0
−si ≤ ci (x) ≤ si , i ∈ E
l ≤ x ≤ u.

with ρ > 0 a fixed real parameter. Two ways to solve it:
Solve the n + p inequality constrained problem with progressive barrier.
We only consider the x variables. The s slack variables are directly adjusted into the
blackbox.
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More general methods

Augmented Lagrangian

Litterature
Direct search methods [Gramacy et al., 2016, Lewis and Torczon, 2002,
Lewis et al., 2006, Lewis and Torczon, 2010]
Trust region methods [Audet et al., 2016, Diniz-Ehrhardt et al., 2011]
Surrogate-based methods [Picheny et al., 2016]
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More general methods

Augmented Lagrangian

Augmented Lagrangian definition
”Classical“ formulation [Nocedal and Wright, 2006]

L(x ;λ, ρ) = f (x) +
∑
j∈E

λjcj (x) + ρ

2
∑
j∈E

|cj (x)|2,

used in [Lewis and Torczon, 2002, Lewis et al., 2006, Picheny et al., 2016].
Powell-Hestenes-Rockafellar formulation [Andreani et al., 2008]

L(x ;λ, µ, ρ) = f (x) + ρ

2
(
‖cE(x) + λ/ρ‖2 + ‖max(0, cI(x) + µ/ρ)‖2

)
for λ ∈ R|E|, µ ∈ R|I|+ , ρ > 0
used in [Audet et al., 2016, Diniz-Ehrhardt et al., 2011, Lewis and Torczon, 2010].
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More general methods

Augmented Lagrangian

Basic framework [Lewis and Torczon, 2010]

Initialisation: Let x0 ∈ Rn ∩ [l , u] be an initial point, ρ1 > 0 and initialize µ1 ∈ R|I|+ ,
λ1 ∈ R|E|, δ1tol > 0. Set k := 1 and σ0 := max

(
0, cI(x0)

)
.

Step 1 : Solve the subproblem

min L(x ;λk , µk , ρk )
s.t l ≤ x ≤ u

Stop when δjk < δk
tol . Get xk ”solution“ of this problem.

Step 2: Update the multipliers estimates. Set λk+1 := λk + ρkcE(xk );
σk := max

(
cI(xk ),−µk/ρk

)
and µk+1 := max

(
0, µk + ρkcI(xk )

)
.

Step 4: Update the penalty parameters. If

max
(
‖cE(xk )‖∞, ‖σk‖∞

)
≤ (1/2) max

(
‖cE(xk−1)‖∞, ‖σk−1‖∞

)
,

set ρk+1 := ρk ; otherwise ρk+1 := 2ρk .
Step 5: Fix new tolerance subproblem. Choose ξ ∈ (0, 1) and set

δk+1
tol := ξδk/max(1, (1 + ‖λk+1‖+ ‖µk+1‖+ ρk+1)/εtol ). Go to Step 1.
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More general methods

Augmented Lagrangian

Remarks
One is not forced to integrate the inequality constraints into the augmented
Lagrangian.
To think about: δk+1

tol is a decreasing parameter. Allow it to increase ?
A subproblem execution = A Mads iteration ?
[Audet et al., 2016, Picheny et al., 2016]
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