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Introduction

Introduction

The problem
i f
e 10
st cr(x) <0
Cg(X) =0
I<x<u
with

o f:R" — RU {+oo} the objective function.

e ¢ :R" = R, j €T the set of |Z| inequality constraints (|Z| > 0)

o ¢ :R" = R, j € & the set of |£| equality constraints (|€] > 0).

o /,u € R" the bound constraints on the variables (can be equal to +co as long as
li <wjfori=1,2,... n).

The functions f and ¢; for j € £ UZ are supposed to be blackboxes (ideally).

Presentation (2/19) MADS Mars 8th, 2021 2/19



The MADS algorithm

MADS (Mesh Adaptive Direct Search) [Audet and Dennis, 2006] is an iterative (and
robust) method which:

@ Evaluates points on a mesh.
@ Iterates around two steps: the search (optional) and the poll.

@ Is guaranteed to converge to a local optimum under rather general assumptions (i.e.
locally Lipschitz functions).
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Introduction

The MADS algorithm and inequality constraints

The constraint violation function h [Audet and Dennis, 2009]
The constraint violation function h: R” — R U {400} is defined as

max(gj(x),0)> if x € X;
h(x) = ;

0 otherwise

where X is the set of relaxable constraints.
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The MADS algorithm and inequality constraints

The constraint violation function h [Audet and Dennis, 2009]

The constraint violation function h: R” — R U {400} is defined as

Z max(gj(x),0)* if x € X;
h(x) = ¢ jez
0 otherwise

where X is the set of relaxable constraints.

The PB-MADS algorithm [Audet and Dennis, 2009] deals with inequality constraints:

@ Via the use of the constraint violation h. At iteration k, all points above the
threshold A, are rejected

e Each iteration is organized around a poll and a search (optional).

@ At each iteration, keeps a list of non-infeasible incumbents points and iterates
around them.

o h.. decreases toward the iterations.
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Relaxing the assumption on black-box equality constraints

A question

Are you a bit familiar with the notion of manifold ?
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Relaxing the assumption on black-box equality constraints

A question

Are you familiar with the notion of linear programming ?
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

Definition

In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a
topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

Definition

In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a
topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia

Requires
@ The (analytical) knowledge of equality constraints.

@ A transformation mapping to solve the problem in a reduced dimension subspace.

Example

Solve the following equality constraint blackbox problem

min f(x1, x2)
(x1,%2) ER?

s.t X+x3=1
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

Definition
In mathematics, a manifold is a topological space that locally resembles Euclidean space
near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a

topological space with the property that each point has a neighborhood that is
homeomorphic to the Euclidean space of dimension n. Wikipedia

Requires
@ The (analytical) knowledge of equality constraints.

@ A transformation mapping to solve the problem in a reduced dimension subspace.

Example

Solve the following equality constraint blackbox problem

min f(x1,x2) min  f(cos#,sin ) &
(x1,%2) ER? 0 — x{ =cosf*
s.t X2+ x3 =1 and-..hop! 0 € [0, 2n] & X3 =sin0*
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

General litterature

o Direct search methods on Riemannian
manifolds [Dreisigmeyer, 2006a, Dreisigmeyer, 2006b, Dreisigmeyer, 2007b].

@ Direct search methods over Lipschitz manifolds [Dreisigmeyer, 2007a].

@ Other [Dreisigmeyer, 2018, Dreisigmeyer, 2019].
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Relaxing the assumption on black-box equality constraints

Blackbox optimization on manifolds

General litterature

@ Direct search methods on Riemannian
manifolds [Dreisigmeyer, 2006a, Dreisigmeyer, 2006b, Dreisigmeyer, 2007b].

@ Direct search methods over Lipschitz manifolds [Dreisigmeyer, 2007a].

@ Other [Dreisigmeyer, 2018, Dreisigmeyer, 2019].

More specific

@ Direct search methods with linear equality
constraints [Audet et al., 2015, Lewis et al., 2006, Lewis and Torczon, 2010].

@ Direct search methods with spherical inequality constraints [Latorre et al., 2018].
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More general methods

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

min  f(x) min  f(x)

xERM xERN

st caz(x)<0 ., st car(x)<0
ce(x)=0 ce(x) <0 and ce(x) >0
I<x<u I<x<u
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A simple method

Reformulate the equality constrained problem as an inequality constrained problem

min  f(x) min  f(x)

xERM xERN

st caz(x)<0 ., st car(x)<0
ce(x)=0 ce(x) <0 and ce(x) >0
I<x<u I<x<u

Inspiration

Engineering common sense.
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A simple method

Reformulate the equality constrained problem as an inequality constrained problem

min  f(x) min  f(x)

xERM xERN

st caz(x)<0 ., st car(x)<0
ce(x)=0 ce(x) <0 and ce(x) >0
I<x<u I<x<u

Inspiration

Engineering common sense.

Problem

@ Scaling: the algorithm can reject many points when the domain is too narrow.

@ Theory.
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More general methods

Extension of the constraint violation function to equality constraints

Inspiration

[Nocedal and Wright, 2006, Chapter 15]

Extend the constraint violation function for equality constrained problems
The constraint violation function h: R" — R U +o0 is defined as
D max(g(x),0% + > g(x)  ifxeX

(X =\ jez JjEE
0 otherwise
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More general methods

Extension of the constraint violation function to equality constraints

Inspiration

[Nocedal and Wright, 2006, Chapter 15]

Extend the constraint violation function for equality constrained problems
The constraint violation function h: R" — R U +o0 is defined as
D max(g(x),0% + > g(x)  ifxeX

(X =\ jez JjEE
0 otherwise

Problem

@ Equivalent to the first approach.
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More general methods

e approach /restoration methods for derivative free optimization

Litterature

@ General framework [Martinez and Sobral, 2013].
@ Use of GSS [Bueno et al., 2013]

@ Use of derivative-free trust regions [Arouxét et al., 2015, Echebest et al., 2017]

General principle [Martinez and Sobral, 2013]
An iteration k is decomposed into two phases:

o The Restoration phase. Find a point y* € Q satisfying the following condition

lles ()1 < &*

where Q = {x € R": I < x < u and cz(x) < 0}

o The Optimization phase. Starting from y*, solve approximatively the following

problem
Tp 0
st |lee(x)|| < €F

k+1

o Update ¥ to e¥™* > 0, set k — k + 1 and repeat the two steps above.
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More general methods

e approach /restoration methods for derivative free optimization

Some remarks

@ One can have one £ by equality constraints, i.e. € € R

@ The two phases can be tackled by different algorithms, according to the nature of
the constraints (i.e. for example ¢; differentiable and/or cheap
constraints [Bueno et al., 2013, Martinez and Sobral, 2013])

@ Some variants solve a penalty subproblem in the Optimization phase mixing
constraints and objective functions [Arouxét et al., 2015, Echebest et al., 2017].

The penalty function [Bueno et al., 2013]
Given 6 € (0, 1), define the following penalty function:

d(x,0) = 0 f(x) + (1 = 0) || ce (x)]|
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More general methods

e approach /restoration methods for derivative free optimization

A very dumb idea (inspired by [Bueno et al., 2013, Martinez and Sobral, 2013])

o Initialization. Let x° € [/, u] a starting point. Set k := 0 and 6° € (0, 1).

@ Step 1 : Restoration phase. If |cg(x¥)|| = 0, set y* := x¥, and go to Step 2.
Else, execute a Mads iteration around x* to find a point y* satisfying
llce (V) < llce(x¥)||- If success, go to Step 2. Otherwise, go to Step 4.

@ Step 2: Update penalty parameter. If ¢(y*,0%) — p(xk,0%) < %(Hc‘g(yk)H — les (")),
set 0kT1 .= gk Otherwise, set

PR+ . llee (I = llee (I

2(f(y*) = F(xK) + llee (M) = llee (Y911

@ Step 3 : Optimization phase. Execute a Mads iteration around y* to find point x@ such
that

B(x" 0FH) — gk, 64 1) < %(||C£(Xk)|| = II(ce )1

If xt"2! satisfies the conditions, set xkt1 := xtr2/: otherwise set xk*1 := y¥. Go to Step 4.

@ Step 4: Update parameter. Update the mesh size and frame size parameter as for the
traditional MADS algorithm. Set k := k + 1.
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More general methods

Penalty function approach

Litterature

o Exact penalty methods (for inequality

constraints): [Di Pillo et al., 2016, Fasano et al.,
o Non exact penalty methods: [Griffin and Kolda, 2010, Price, 2020]

2014, Liuzzi and Lucidi, 2009].

Idea
in f
o e
sc () <0 — min z(x
ce(x) =0 xellu] 10 p) or
I<x<u
where
Zi(x,p) =f(x)+p (Z max (0, ¢;(x
JET
and

Zo(x,p) = F(x) +p (Z max(0, 6(x
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More general methods

Penalty function approach

Remarks

@ One can also let the inequality constraints in the original constraints.

@ In derivative-free optimization literature, convergence results have been given in the
case where:
© The objective function and the inequality constraints (no equality constraints) are
Lipschitz continuous [Di Pillo et al., 2016] for the /; penalty function.
@ The exactness of the /; penalty function has been equally proved in the case where the
objective function and the constraints functions are locally Lipschitz (¢, n)
invex [Antczak, 2019].
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More general methods

Penalty function approach variant

Idea (given by Orban/Conn)

Reformulate the original problem:

min f(x) +p2f:1 si

xeRn,seRi

s.t cz(x) <0
—si<ci(x)<s,i€&
I <x<u.

with p > 0 a fixed real parameter. Two ways to solve it:
@ Solve the n+ p inequality constrained problem with progressive barrier.

@ We only consider the x variables. The s slack variables are directly adjusted into the
blackbox.

v
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Augmented Lagrangian

Litterature

o Direct search methods [Gramacy et al., 2016, Lewis and Torczon, 2002,
Lewis et al., 2006, Lewis and Torczon, 2010]

@ Trust region methods [Audet et al., 2016, Diniz-Ehrhardt et al., 2011]
@ Surrogate-based methods [Picheny et al., 2016]
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More general methods

Augmented Lagrangian

Augmented Lagrangian definition

o "Classical" formulation [Nocedal and Wright, 2006]

LA ) = F()+ Y Ng() + 5D I,

Jje&

Jje&

used in [Lewis and Torczon, 2002, Lewis et al., 2006, Picheny et al., 2016].

o Powell-Hestenes-Rockafellar formulation [Andreani et al., 2008]

LGN s p) = F() + £ (llee(x) + A/pl* + | max(0, cz(x) + n/p)IF)

forAERlSl,uele‘,p> 0

used in [Audet et al., 2016, Diniz-Ehrhardt et al., 2011, Lewis and Torczon, 2010].
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Augmented Lagrangian

Basic framework [Lewis and Torczon, 2010]

Initialisation: Let x° € R” N[/, u] be an initial point, p! > 0 and initialize u' € RL_I‘,
Al e RI€I 61,>0. Set k:=1 and ¢° := max (0, cI(xo)).
Step 1 : Solve the subproblem
min  L(x; Ak, pk, pk)
s.t I<x<u
Stop when &k < 5?0,. Get x* "solution" of this problem.
Step 2: Update the multipliers estimates. Set A\<*1 := Ak + pkcg (xK);
ok := max (cz(xk), —p,k/pk) and pkt1 := max (0, wk 4+ pkcI(xk)).
Step 4: Update the penalty parameters. If
max (e (<) locs o loc ) < (1/2) max (Jlce (<=1 oe, 10100

set pkt1 .= pk; otherwise pkt1 := 2pk.
Step 5: Fix new tolerance subproblem. Choose £ € (0,1) and set

SKHL = £5% / max(1, (1 4 [N + || 4+ o541 /eror). Go to Step 1.

tol
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Augmented Lagrangian

Remarks

@ One is not forced to integrate the inequality constraints into the augmented
Lagrangian.

@ To think about: 5;71 is a decreasing parameter. Allow it to increase ?

@ A subproblem execution = A Mads iteration ?
[Audet et al., 2016, Picheny et al., 2016]
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More general methods
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