

Polytechnique Montréal Department of Mathematics and Industrial Engineering

The MADS algorithm: dealing with general equality constraints; **Discussions**

Ludovic Salomon Jean Bigeon Sébastien LE DIGABEL

Introduction

The problem

$$
\min_{x \in \mathbb{R}^n} f(x)
$$
\n
$$
\text{s.t} \quad c_{\mathcal{I}}(x) \le 0
$$
\n
$$
c_{\mathcal{E}}(x) = 0
$$
\n
$$
l \le x \le u
$$

with

- $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ the objective function.
- $c_j: \mathbb{R}^n \to \mathbb{R}, j \in \mathcal{I}$ the set of $|\mathcal{I}|$ inequality constraints $(|\mathcal{I}| \geq 0)$
- $c_j: \mathbb{R}^n \to \mathbb{R}, j \in \mathcal{E}$ the set of $|\mathcal{E}|$ equality constraints $(|\mathcal{E}| \geq 0)$.
- *l*, *u* ∈ \mathbb{R}^n the bound constraints on the variables (can be equal to $\pm \infty$ as long as $l_i < u_i$ for $i = 1, 2, ..., n$.

The functions f and c_j for $j \in \mathcal{E} \cup \mathcal{I}$ are supposed to be blackboxes (ideally).

The MADS algorithm

MADS (Mesh Adaptive Direct Search) [\[Audet and Dennis, 2006\]](#page-28-0) is an iterative (and robust) method which:

- **Evaluates points on a mesh.**
- **Iterates around two steps: the search (optional) and the poll.**
- \bullet Is guaranteed to converge to a local optimum under rather general assumptions (i.e. locally Lipschitz functions).

The MADS algorithm

MADS (Mesh Adaptive Direct Search) [\[Audet and Dennis, 2006\]](#page-28-0) is an iterative (and robust) method which:

- **Evaluates points on a mesh.**
- Iterates around two steps: the search (optional) and the poll.
- Is guaranteed to converge to a local optimum under rather general assumptions (i.e. locally Lipschitz functions).

[Introduction](#page-1-0)

The MADS algorithm and inequality constraints

The constraint violation function h [\[Audet and Dennis, 2009\]](#page-28-1)

The constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is defined as

$$
h(x) = \begin{cases} \sum_{j \in \mathcal{I}} \max(g_j(x), 0)^2 & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases}
$$

where X is the set of relaxable constraints.

The PB-MADS algorithm [\[Audet and Dennis, 2009\]](#page-28-1) deals with inequality constraints:

- \bullet Via the use of the constraint violation h. At iteration k, all points above the threshold h^k_{\max} are rejected
- Each iteration is organized around a poll and a search (optional).
- At each iteration, keeps a list of non-infeasible incumbents points and iterates around them.
- h_{max}^k decreases toward the iterations.

[Introduction](#page-1-0)

The MADS algorithm and inequality constraints

The constraint violation function h [\[Audet and Dennis, 2009\]](#page-28-1)

The constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is defined as

$$
h(x) = \begin{cases} \sum_{j \in \mathcal{I}} \max(g_j(x), 0)^2 & \text{if } x \in X; \\ 0 & \text{otherwise} \end{cases}
$$

where X is the set of relaxable constraints.

The PB-MADS algorithm [\[Audet and Dennis, 2009\]](#page-28-1) deals with inequality constraints:

- \bullet Via the use of the constraint violation h. At iteration k, all points above the threshold h^k_{max} are rejected
- Each iteration is organized around a poll and a search (optional).
- At each iteration, keeps a list of non-infeasible incumbents points and iterates around them.
- h_{max}^k decreases toward the iterations.

A question

Are you a bit familiar with the notion of manifold ?

A question

Are you familiar with the notion of linear programming ?

Definition

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n. **Wikipedia**

- The (analytical) knowledge of equality constraints.
- A transformation mapping to solve the problem in a reduced dimension subspace.

Definition

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n. **Wikipedia**

Requires

- The (analytical) knowledge of equality constraints.
- A transformation mapping to solve the problem in a reduced dimension subspace.

Example

Solve the following equality constraint blackbox problem

$$
\min_{\substack{(x_1,x_2)\in\mathbb{R}^2\\ \text{s.t}}}\quad f(x_1,x_2)\\ x_1^2+x_2^2=1
$$

Definition

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n. **Wikipedia**

Requires

- The (analytical) knowledge of equality constraints.
- A transformation mapping to solve the problem in a reduced dimension subspace.

Example

Solve the following equality constraint blackbox problem

$$
\min_{\substack{(x_1,x_2)\in\mathbb{R}^2\\ \text{s.t}}}\quad f(x_1,x_2)\n\quad \xrightarrow{\text{min}\quad f(\cos\theta,\sin\theta)}\quad \xrightarrow{\theta^{\star}\\ \theta\in[0,2\pi]}\quad \xrightarrow{\text{set}}\quad x_1^{\star}=\cos\theta^{\star}\\ x_2^{\star}=\sin\theta^{\star}
$$

General litterature

- **Direct search methods on Riemannian** manifolds [\[Dreisigmeyer, 2006a,](#page-30-0) [Dreisigmeyer, 2006b,](#page-30-1) [Dreisigmeyer, 2007b\]](#page-30-2).
- **Direct search methods over Lipschitz manifolds [\[Dreisigmeyer, 2007a\]](#page-30-3).**
- Other [\[Dreisigmeyer, 2018,](#page-30-4) [Dreisigmeyer, 2019\]](#page-31-0).

General litterature

- **Direct search methods on Riemannian** manifolds [\[Dreisigmeyer, 2006a,](#page-30-0) [Dreisigmeyer, 2006b,](#page-30-1) [Dreisigmeyer, 2007b\]](#page-30-2).
- **Direct search methods over Lipschitz manifolds [\[Dreisigmeyer, 2007a\]](#page-30-3).**
- Other [\[Dreisigmeyer, 2018,](#page-30-4) [Dreisigmeyer, 2019\]](#page-31-0).

More specific

- **•** Direct search methods with linear equality constraints [\[Audet et al., 2015,](#page-29-0) [Lewis et al., 2006,](#page-32-0) [Lewis and Torczon, 2010\]](#page-32-1).
- **Direct search methods with spherical inequality constraints [\[Latorre et al., 2018\]](#page-32-2).**

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

$$
\min_{x \in \mathbb{R}^n} f(x) \qquad \min_{x \in \mathbb{R}^n} f(x) \ns.t \qquad c_{\mathcal{I}}(x) \le 0 \qquad \Longrightarrow \quad s.t \qquad c_{\mathcal{I}}(x) \le 0 \n c_{\mathcal{E}}(x) = 0 \qquad \qquad c_{\mathcal{E}}(x) \le 0 \text{ and } c_{\mathcal{E}}(x) \ge 0 \n l \le x \le u
$$

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

$$
\min_{x \in \mathbb{R}^n} f(x) \qquad \min_{x \in \mathbb{R}^n} f(x) \n\text{s.t} \quad c_{\mathcal{I}}(x) \le 0 \implies \text{s.t} \quad c_{\mathcal{I}}(x) \le 0 \n\quad c_{\mathcal{E}}(x) = 0 \qquad \qquad c_{\mathcal{E}}(x) \le 0 \text{ and } c_{\mathcal{E}}(x) \ge 0 \n1 \le x \le u
$$

Inspiration

Engineering common sense.

A simple method

Reformulate the equality constrained problem as an inequality constrained problem

$$
\min_{x \in \mathbb{R}^n} f(x) \qquad \min_{x \in \mathbb{R}^n} f(x) \ns.t \qquad c_{\mathcal{I}}(x) \le 0 \qquad \Longrightarrow \quad s.t \qquad c_{\mathcal{I}}(x) \le 0 \n c_{\mathcal{E}}(x) = 0 \qquad \Longrightarrow \quad c_{\mathcal{E}}(x) \le 0 \text{ and } c_{\mathcal{E}}(x) \ge 0 \n l \le x \le u
$$

Inspiration

Engineering common sense.

Problem

- Scaling: the algorithm can reject many points when the domain is too narrow.
- Theory.

Extension of the constraint violation function to equality constraints

Inspiration

[\[Nocedal and Wright, 2006,](#page-33-0) Chapter 15]

Extend the constraint violation function for equality constrained problems

The constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup +\infty$ is defined as

$$
h(x) = \begin{cases} \sum_{j \in \mathcal{I}} \max(c_j(x), 0)^2 + \sum_{j \in \mathcal{E}} c_j(x)^2 & \text{if } x \in \mathcal{X} \\ 0 & \text{otherwise} \end{cases}
$$

Extension of the constraint violation function to equality constraints

Inspiration

[\[Nocedal and Wright, 2006,](#page-33-0) Chapter 15]

Extend the constraint violation function for equality constrained problems The constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup +\infty$ is defined as

$$
h(x) = \begin{cases} \sum_{j \in \mathcal{I}} \max(c_j(x), 0)^2 + \sum_{j \in \mathcal{E}} c_j(x)^2 & \text{if } x \in \mathcal{X} \\ 0 & \text{otherwise} \end{cases}
$$

Problem

• Equivalent to the first approach.

ε approach/restoration methods for derivative free optimization

Litterature

- General framework [\[Martínez and Sobral, 2013\]](#page-33-1).
- Use of GSS [\[Bueno et al., 2013\]](#page-29-1)
- Use of derivative-free trust regions [\[Arouxét et al., 2015,](#page-28-2) [Echebest et al., 2017\]](#page-31-1)

General principle [\[Martínez and Sobral, 2013\]](#page-33-1)

An iteration k is decomposed into two phases:

The Restoration phase. Find a point $y^k \in \Omega$ satisfying the following condition

 $\|\mathsf{c}_{\varepsilon}(y^{k})\| \leq \varepsilon^{k}$

where $\Omega = \{x \in \mathbb{R}^n : 1 \le x \le u \text{ and } c_{\mathcal{I}}(x) \le 0\}$

The Optimization phase. Starting from y^k , solve approximatively the following problem

$$
\min_{x \in \Omega} f(x)
$$

s.t $||c_{\mathcal{E}}(x)|| \le \varepsilon^{k}$

Update ε^k to $\varepsilon^{k+1} > 0$, set $k \to k+1$ and repeat the two steps above.

ε approach/restoration methods for derivative free optimization

Some remarks

- One can have one ε_i^k by equality constraints, i.e. $\varepsilon^k \in \mathbb{R}_+^p$.
- The two phases can be tackled by different algorithms, according to the nature of the constraints (i.e. for example c_i differentiable and/or cheap constraints [\[Bueno et al., 2013,](#page-29-1) [Martínez and Sobral, 2013\]](#page-33-1))
- Some variants solve a penalty subproblem in the Optimization phase mixing constraints and objective functions [\[Arouxét et al., 2015,](#page-28-2) [Echebest et al., 2017\]](#page-31-1).

The penalty function [\[Bueno et al., 2013\]](#page-29-1)

Given $\theta \in (0, 1)$, define the following penalty function:

$$
\phi(x,\theta)=\theta f(x)+(1-\theta)\|c_{\mathcal{E}}(x)\|
$$

ε approach/restoration methods for derivative free optimization

A very dumb idea (inspired by [\[Bueno et al., 2013,](#page-29-1) [Martínez and Sobral, 2013\]](#page-33-1))

- **Initialization**. Let $x^0 \in [l, u]$ a starting point. Set $k := 0$ and $\theta^0 \in (0, 1)$.
- **Step 1 : Restoration phase**. If $||c_{\mathcal{E}}(x^k)|| = 0$, set $y^k := x^k$, and go to Step 2. Else, execute a Mads iteration around x^k to find a point y^k satisfying $\|\mathit{c}_{\mathcal{E}}(y^{k})\|<\|\mathit{c}_{\mathcal{E}}(x^{k})\|.$ If success, go to Step 2. Otherwise, go to Step 4.
- **Step 2: Update penalty parameter**. If $\phi(y^k, \theta^k) \phi(x^k, \theta^k) \leq \frac{1}{2}(\|c_{\mathcal{E}}(y^k)\| \|c_{\mathcal{E}}(x^k)\|)$, set $\theta^{k+1} := \theta^k$. Otherwise, set

$$
\theta^{k+1} := \frac{\|c_{\mathcal{E}}(x^k)\| - \|c_{\mathcal{E}}(y^k)\|}{2(f(y^k) - f(x^k) + \|c_{\mathcal{E}}(x^k)\| - \|c_{\mathcal{E}}(y^k)\|)}
$$

Step 3 : Optimization phase. Execute a Mads iteration around y^k to find point x^{trial} such that

$$
\phi(x^{trial},\theta^{k+1}) - \phi(x^k,\theta^{k+1}) \leq \frac{1}{2}(\|\mathbf{c}_{\mathcal{E}}(x^k)\| - \|(\mathbf{c}_{\mathcal{E}}(y^k)\|).
$$

If x^{trial} satisfies the conditions, set $x^{k+1} := x^{trial}$; otherwise set $x^{k+1} := y^k$. Go to Step 4.

Step 4: Update parameter. Update the mesh size and frame size parameter as for the traditional MADS algorithm. Set $k := k + 1$.

Penalty function approach

Litterature

- Exact penalty methods (for inequality constraints): [\[Di Pillo et al., 2016,](#page-29-2) [Fasano et al., 2014,](#page-31-2) [Liuzzi and Lucidi, 2009\]](#page-32-3).
- Non exact penalty methods: [\[Griffin and Kolda, 2010,](#page-31-3) [Price, 2020\]](#page-33-2)

Idea

$$
\min_{x \in \mathbb{R}^n} f(x)
$$
\ns.c

\n
$$
c_{\mathcal{I}}(x) \leq 0 \implies \min_{x \in [I,u]} Z_1(x,\rho) \text{ or } \min_{x \in [I,u]} Z_2(x,\rho)
$$
\n
$$
I \leq x \leq u
$$

where

$$
Z_1(x,\rho)=f(x)+\rho\left(\sum_{j\in\mathcal{I}}\mathsf{max}(0,c_j(x))+\sum_{j\in\mathcal{E}}|c_j(x)|\right),\rho>0
$$

and

$$
Z_2(x,\rho) = f(x) + \rho \left(\sum_{j \in \mathcal{I}} \max(0, c_j(x))^2 + \sum_{j \in \mathcal{E}} c_j(x)^2 \right), \rho > 0.
$$

Penalty function approach

Remarks

- One can also let the inequality constraints in the original constraints.
- In derivative-free optimization literature, convergence results have been given in the case where:
	- **1** The objective function and the inequality constraints (no equality constraints) are Lipschitz continuous [\[Di Pillo et al., 2016\]](#page-29-2) for the l_1 penalty function.
	- \bullet The exactness of the l_1 penalty function has been equally proved in the case where the objective function and the constraints functions are locally Lipschitz (*φ, η*) invex [\[Antczak, 2019\]](#page-28-3).

Penalty function approach variant

Idea (given by Orban/Conn)

Reformulate the original problem:

$$
\min_{x \in \mathbb{R}^n, s \in \mathbb{R}^p_+} f(x) + \rho \sum_{i=1}^p s_i
$$
\ns.t\n
$$
c_{\mathcal{I}}(x) \le 0
$$
\n
$$
-s_i \le c_i(x) \le s_i, i \in \mathcal{E}
$$
\n
$$
1 \le x \le u.
$$

with $\rho > 0$ a fixed real parameter. Two ways to solve it:

- Solve the $n + p$ inequality constrained problem with progressive barrier.
- \bullet We only consider the x variables. The s slack variables are directly adjusted into the blackbox.

Litterature

- Direct search methods [\[Gramacy et al., 2016,](#page-31-4) [Lewis and Torczon, 2002,](#page-32-4) [Lewis et al., 2006,](#page-32-0) [Lewis and Torczon, 2010\]](#page-32-1)
- Trust region methods [\[Audet et al., 2016,](#page-29-3) [Diniz-Ehrhardt et al., 2011\]](#page-29-4)
- Surrogate-based methods [\[Picheny et al., 2016\]](#page-33-3)

Augmented Lagrangian definition

"Classical" formulation [\[Nocedal and Wright, 2006\]](#page-33-0)

$$
\mathcal{L}(x; \lambda, \rho) = f(x) + \sum_{j \in \mathcal{E}} \lambda_j c_j(x) + \frac{\rho}{2} \sum_{j \in \mathcal{E}} |c_j(x)|^2,
$$

used in [\[Lewis and Torczon, 2002,](#page-32-4) [Lewis et al., 2006,](#page-32-0) [Picheny et al., 2016\]](#page-33-3).

Powell-Hestenes-Rockafellar formulation [\[Andreani et al., 2008\]](#page-28-4)

$$
\mathcal{L}(x; \lambda, \mu, \rho) = f(x) + \frac{\rho}{2} \left(||c_{\mathcal{E}}(x) + \lambda/\rho||^2 + ||\max(0, c_{\mathcal{I}}(x) + \mu/\rho)||^2 \right)
$$

for $\lambda \in \mathbb{R}^{|\mathcal{E}|}, \mu \in \mathbb{R}^{|\mathcal{I}|}_+, \rho > 0$ used in [\[Audet et al., 2016,](#page-29-3) [Diniz-Ehrhardt et al., 2011,](#page-29-4) [Lewis and Torczon, 2010\]](#page-32-1).

Basic framework [\[Lewis and Torczon, 2010\]](#page-32-1)

- **Initialisation**: Let $x^0 \in \mathbb{R}^n \cap [l, u]$ be an initial point, $\rho^1 > 0$ and initialize $\mu^1 \in \mathbb{R}_+^{|{\mathcal{I}}|}$, $\lambda^1 \in \mathbb{R}^{\mathcal{|E|}}, \ \delta^1_{tol} > 0.$ Set $k := 1$ and $\sigma^0 := \max\left(0, c_{\mathcal{I}}(x^0)\right)$.
- **Step** 1 **: Solve the subproblem**

$$
\begin{array}{ll}\n\min & \mathcal{L}(x; \lambda^k, \mu^k, \rho^k) \\
\text{s.t} & I \leq x \leq u\n\end{array}
$$

Stop when $\delta^{j_k} < \delta^k_{tol}$. Get x^k "solution" of this problem.

- **Step 2: Update the multipliers estimates**. Set $\lambda^{k+1} := \lambda^k + \rho^k c_{\mathcal{E}}(x^k)$; $\sigma^k:=\max\left(c_\mathcal{I}(x^k),-\mu^k/\rho^k\right)$ and $\mu^{k+1}:=\max\left(0,\mu^k+\rho^k c_\mathcal{I}(x^k)\right)$.
- **Step 4: Update the penalty parameters**. If

$$
\max\left(\|c_{\mathcal{E}}(x^k)\|_{\infty}, \|\sigma^k\|_{\infty}\right) \leq (1/2) \max\left(\|c_{\mathcal{E}}(x^{k-1})\|_{\infty}, \|\sigma^{k-1}\|_{\infty}\right),
$$

set $\rho^{k+1} := \rho^k$; otherwise $\rho^{k+1} := 2\rho^k$.

Step 5: Fix new tolerance subproblem. Choose *ξ* ∈ (0*,* 1) and set

 $\delta_{tol}^{k+1} := \xi \delta^k / \max(1, (1 + \|\lambda^{k+1}\| + \|\mu^{k+1}\| + \rho^{k+1})/\epsilon_{tol}).$ Go to Step 1.

Remarks

- One is not forced to integrate the inequality constraints into the augmented Lagrangian.
- To think about: $\delta_{\mathit{tol}}^{k+1}$ is a decreasing parameter. Allow it to increase ?
- \bullet A subproblem execution $=$ A Mads iteration ? [\[Audet et al., 2016,](#page-29-3) [Picheny et al., 2016\]](#page-33-3)

Andreani, R., Birgin, E. G., Martínez, J. M., and Schuverdt, M. L. (2008). On augmented lagrangian methods with general lower-level constraints. SIAM Journal on Optimization, 18(4):1286–1309.

Antczak, T. (2019).

Exactness of the absolute value penalty function method for nonsmooth -invex optimization problems.

International Transactions in Operational Research, 26(4):1504–1526.

Arouxét, M. B., Echebest, N. E., and Pilotta, E. A. (2015). Inexact restoration method for nonlinear optimization without derivatives. Journal of Computational and Applied Mathematics, 290:26–43.

Audet, C. and Dennis, J. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on Optimization, 17(1):188–217.

Audet, C. and Dennis, J. (2009).

A progressive barrier for derivative-free nonlinear programming. SIAM Journal on Optimization, 20(1):445–472.

Audet, C., Le Digabel, S., and Peyrega, M. (2015). Linear equalities in blackbox optimization.

Computational Optimization and Applications, 61(1):1–23.

Audet, C., Le Digabel, S., and Peyrega, M. (2016). A derivative-free trust-region augmented lagrangian algorithm. Technical report, Technical Report G-2016-53, Les cahiers du GERAD.

Bueno, L., Friedlander, A., Martínez, J., and Sobral, F. (2013). Inexact restoration method for derivative-free optimization with smooth constraints. SIAM Journal on Optimization, 23(2):1189–1213.

Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., and Rinaldi, F. (2016). A direct-type approach for derivative-free constrained global optimization. Computational Optimization and Applications, 65(2):361–397.

Diniz-Ehrhardt, M. A., Martinez, J. M., and Pedroso, L. G. (2011). Derivative-free methods for nonlinear programming with general lower-level constraints.

Computational and Applied Mathematics, 30:19–52.

Dreisigmeyer, D. W. (2006a).

Direct search methods over Riemannian manifolds.

Technical Report LA-UR-06-7416, Los Alamos National Laboratory, Los Alamos, USA.

Dreisigmeyer, D. W. (2006b).

Equality constraints, Riemannian manifolds and direct search methods. Technical Report LA-UR-06-7406, Los Alamos National Laboratory, Los Alamos, USA.

Dreisigmeyer, D. W. (2007a).

Direct search algorithms over Lipschitz manifolds.

Technical Report LA-UR-07-1073, Los Alamos National Laboratory, Los Alamos, USA.

Dreisigmeyer, D. W. (2007b).

A simplicial continuation direct search method.

Technical Report LA-UR-07-2755, Los Alamos National Laboratory, Los Alamos, USA.

Direct search methods on reductive homogeneous spaces.

Journal of Optimization Theory and Applications, 176(3):585–604.

Dreisigmeyer, D. W. (2019).

Whitney's theorem, triangular sets, and probabilistic descent on manifolds. Journal of Optimization Theory and Applications, 182(3):935–946.

Echebest, N., Schuverdt, M. L., and Vignau, R. P. (2017). An inexact restoration derivative-free filter method for nonlinear programming. Computational and Applied Mathematics, 36(1):693–718.

Fasano, G., Liuzzi, G., Lucidi, S., and Rinaldi, F. (2014). A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM Journal on Optimization, 24(3):959–992.

Gramacy, R. B., Gray, G. A., Digabel, S. L., Lee, H. K. H., Ranjan, P., Wells, G., and Wild, S. M. (2016). Modeling an augmented lagrangian for blackbox constrained optimization. Technometrics, 58(1):1–11.

Griffin, J. D. and Kolda, T. G. (2010).

Nonlinearly Constrained Optimization Using Heuristic Penalty Methods and Asynchronous Parallel Generating Set Search.

Applied Mathematics Research eXpress, 2010(1):36–62.

Latorre, V., Habal, H., Graeb, H., and Lucidi, S. (2018).

Derivative free methodologies for circuit worst case analysis. Optimization Letters, 13(7):1557–1571.

Lewis, R. M. and Torczon, V. (2002).

A globally convergent augmented lagrangian pattern search algorithm for optimization with general constraints and simple bounds.

SIAM Journal on Optimization, 12(4):1075–1089.

Lewis, R. M. and Torczon, V. (2010).

A direct search approach to nonlinear programming problems using an augmented lagrangian method with explicit treatment of linear constraints.

Technical Report of the College of William and Mary, pages 1–25.

Lewis, R. M., Torczon, V. J., and Kolda, T. G. (2006).

A generating set direct search augmented lagrangian algorithm for optimization with a combination of general and linear constraints.

Technical report.

Liuzzi, G. and Lucidi, S. (2009).

A derivative-free algorithm for inequality constrained nonlinear programming via smoothing of an l inf penalty function.

SIAM Journal on Optimization, 20(1):1–29.

Martínez, J. M. and Sobral, F. N. C. (2013).

Constrained derivative-free optimization on thin domains. Journal of Global Optimization, 56(3):1217–1232.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Picheny, V., Gramacy, R. B., Wild, S., and Le Digabel, S. (2016). Bayesian optimization under mixed constraints with a slack-variable augmented lagrangian.

In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing Systems 29, pages 1435–1443. Curran Associates, Inc.

Price, C. J. (2020).

Direct search nonsmooth constrained optimization via rounded l1 penalty functions. Optimization Methods and Software, 0(0):1–23.