

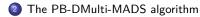
Polytechnique Montréal Department of Mathematics and Industrial Engineering

A progressive barrier for blackbox/derivative-free multiobjective optimization : very preliminary results

Ludovic SALOMON Jean BIGEON Sébastien LE DIGABEL

Warnings !!

As the title indicates, this work is under development.



The problem

Multiobjective optimization problem

$$\min_{x\in\Omega}f(x)=[f_1(x),f_2(x),\ldots,f_m(x)]^\top$$

where

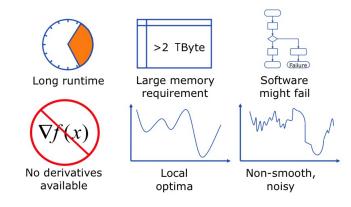
•
$$\Omega = \{x \in X : c_i(x) \le 0, \forall i \in \mathcal{I}\} \subset \mathbb{R}^n \text{ is the feasible set.}$$

•
$$f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
 for $i = 1, 2, ..., m, m \ge 2$ are objective functions.

•
$$c_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$
 for $i \in \mathcal{I}$ are relaxable constraints.

The f_i for i = 1, 2, ..., m and c_i for $i \in \mathcal{I}$ are supposed to be blackboxes.

What is a blackbox ?



Copyright © 2009 Boeing. All rights reserved

Introduction

Pareto dominance

Given two vectors z^1 and z^2 in the objective space, we write that: $z^1 \leq z^2 \iff z^2 - z^1 \in \mathbb{R}^m_+ \iff \forall i = 1, 2, \dots, m, z^1_i \leq z^2_i$.

Given two decision vectors x^1 and x^2 , we write that:

- $x^1 \preccurlyeq x^2$ (x^1 weakly dominates x^2) if and only if $f(x^1) \le f(x^2)$. ex: $f(x^1) = [-1,1]^\top$, $f(x^2) = [1,1]^\top$.
- x¹ ≺ x² (x¹ dominates x²) if and only if x¹ ≼ x² and at least one objective is strictly better than another. ex: f(x¹) = [-1,0]^T, f(x²) = [1,2]^T.
- x¹ || x² (x¹ and x² are incomparable) if neither x¹ weakly dominates x² nor x² weakly dominates x¹. ex: f(x¹) = [-1,0]^T, f(x²) = [-2,1]^T.

Pareto dominance

 $x \in \Omega$ is said to be Pareto-optimal if there is no other vector in Ω that dominates it. The set of Pareto-optimal solutions (decision variables) is called the Pareto set and the image of the Pareto set is called the Pareto front.

Introduction

Pareto dominance

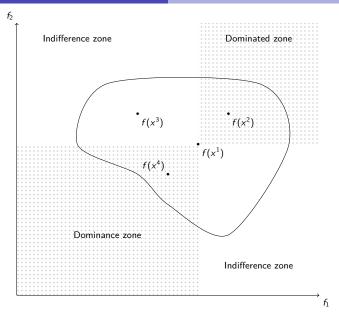
Given two vectors z^1 and z^2 in the objective space, we write that: $z^1 \leq z^2 \iff z^2 - z^1 \in \mathbb{R}^m_+ \iff \forall i = 1, 2, \dots, m, z^1_i \leq z^2_i$.

Given two decision vectors x^1 and x^2 , we write that:

- $x^1 \preccurlyeq x^2$ (x^1 weakly dominates x^2) if and only if $f(x^1) \le f(x^2)$. ex: $f(x^1) = [-1,1]^\top$, $f(x^2) = [1,1]^\top$.
- x¹ ≺ x² (x¹ dominates x²) if and only if x¹ ≼ x² and at least one objective is strictly better than another. ex: f(x¹) = [-1,0]^T, f(x²) = [1,2]^T.
- x¹ || x² (x¹ and x² are incomparable) if neither x¹ weakly dominates x² nor x² weakly dominates x¹. ex: f(x¹) = [-1,0]^T, f(x²) = [-2,1]^T.

Pareto dominance

 $x \in \Omega$ is said to be Pareto-optimal if there is no other vector in Ω that dominates it. The set of Pareto-optimal solutions (decision variables) is called the Pareto set and the image of the Pareto set is called the Pareto front.



An illustration of Pareto dominance for a minimization biobjective problem.

Presentation (/31)	
rescittation	(')	(JI)	

DMulti-MADS

Introduction

Previously, in mesh adaptive direct search algorithms for multiobjective optimization

We proposed the DMulti-MADS algorithm which:

- is strongly inspired by Direct MultiSearch (DMS) [Custódio et al., 2011] and BiMADS [Audet et al., 2008].
- Handles more than 2 objectives, contrary to BiMADS.
- Converges to a set of locally optimal Pareto points contrary to DMS, under mild assumptions.
- Does not aggregate any of the objective functions.
- Practically, it is competitive according to other state-of-the-art algorithms (NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BiMADS).

The question

DMulti-MADS deals with general constraints via an extreme barrier approach, i.e.

$$f_{\Omega}(x) = \begin{cases} [+\infty, +\infty, \dots, +\infty] & \text{if } x \notin \Omega \\ f(x) & \text{otherwise} \end{cases}$$

Could we exploit relaxable constraints c_i , $\forall i \in \mathcal{I}$?

Introduction

Previously, in mesh adaptive direct search algorithms for multiobjective optimization

We proposed the DMulti-MADS algorithm which:

- is strongly inspired by Direct MultiSearch (DMS) [Custódio et al., 2011] and BiMADS [Audet et al., 2008].
- Handles more than 2 objectives, contrary to BiMADS.
- Converges to a set of locally optimal Pareto points contrary to DMS, under mild assumptions.
- Does not aggregate any of the objective functions.
- Practically, it is competitive according to other state-of-the-art algorithms (NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BiMADS).

The question

DMulti-MADS deals with general constraints via an extreme barrier approach, i.e.

$$f_{\Omega}(x) = \begin{cases} [+\infty, +\infty, \dots, +\infty] & \text{ if } x \notin \Omega \\ f(x) & \text{ otherwise} \end{cases}$$

Could we exploit relaxable constraints c_i , $\forall i \in \mathcal{I}$?

What has the derivative-free/blackbox literature ever done for us ?

• In single-objective convergent-based derivative-free methods:

With derivatives	Without derivatives
Augmented Lagrangian [Nocedal and Wright, 2006]	[Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002]	[Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006]	[Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006]	[Liuzzi and Lucidi, 2009]

- In multiobjective convergent-based derivative-free methods:
 - Scalarization based approaches [Audet et al., 2008, Audet et al., 2010]
 - Merit function based-approaches [Liuzzi et al., 2016]

What has the derivative-free/blackbox literature ever done for us ?

• In single-objective convergent-based derivative-free methods:

With derivatives	Without derivatives
Augmented Lagrangian [Nocedal and Wright, 2006]	[Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002]	[Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006]	[Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006]	[Liuzzi and Lucidi, 2009]

- In multiobjective convergent-based derivative-free methods:
 - Scalarization based approaches [Audet et al., 2008, Audet et al., 2010]
 - Merit function based-approaches [Liuzzi et al., 2016]

The PB-MADS algorithm for constrained single-objective optimization

• At each iteration, MADS attempts to find better points on the mesh

$$M^{k} = \{x^{k} + \delta^{k} Dy : y \in \mathbb{N}^{p}\} \subset \mathbb{R}^{n}$$

where:

- x^k is the current incumbent solution.
- $\delta^k > 0$ is the mesh size parameter.
- D = GZ with $G \in \mathbb{R}^{n \times n}$ inversible and $Z \in \mathbb{Z}^{n \times p}$ such that the columns of Z form a positive spanning set of \mathbb{R}^n .
- Each iteration is organized around a poll and a search step.
- Constraints are aggregated using the constraint violation function

$$h(x) = \begin{cases} \sum_{i \in \mathcal{I}} \max\{c_i(x), 0\}^2 & \text{if } x \in X; \\ +\infty & \text{otherwise.} \end{cases}$$

- PB-MADS considered the constrained single objective optimization problem as a biobjective one, where *f* and *h* are the two objective functions to optimize.
- Use a threshold value h_{\max}^k to reject not-promising points.
- Towards the iterations, h_{\max}^k is reduced.

The PB-MADS algorithm for constrained single-objective optimization

• At each iteration, MADS attempts to find better points on the mesh

$$M^{k} = \{x^{k} + \delta^{k} Dy : y \in \mathbb{N}^{p}\} \subset \mathbb{R}^{n}$$

where:

- x^k is the current incumbent solution.
- $\delta^k > 0$ is the mesh size parameter.
- D = GZ with $G \in \mathbb{R}^{n \times n}$ inversible and $Z \in \mathbb{Z}^{n \times p}$ such that the columns of Z form a positive spanning set of \mathbb{R}^n .
- Each iteration is organized around a poll and a search step.
- Constraints are aggregated using the constraint violation function

$$h(x) = \begin{cases} \sum_{i \in \mathcal{I}} \max\{c_i(x), 0\}^2 & \text{if } x \in X; \\ +\infty & \text{otherwise.} \end{cases}$$

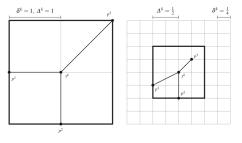
- PB-MADS considered the constrained single objective optimization problem as a biobjective one, where *f* and *h* are the two objective functions to optimize.
- Use a threshold value h_{\max}^k to reject not-promising points.
- Towards the iterations, h_{\max}^k is reduced.

The poll I

• The convergence analysis is based on the poll step, where one evaluates the following candidates:

$${\sf P}^k=\{x^k+\delta^k d: d\in \mathbb{D}_\Delta^k\}\subset {\sf F}^k$$

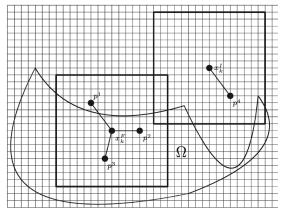
where \mathbb{D}^k_{Δ} is a positive spanning set of directions and F^k is the frame centered at x^k of frame size $\Delta^k > 0$.



Example of frames and meshes in \mathbb{R}^2 [Audet and Hare, 2017]

The poll II

• The PB-Mads algorithm allows the evaluations of poll candidates around two poll centers, the best feasible one x_F^k and the best infeasible one x_I^k .



Example of poll sets for PB-MADS in \mathbb{R}^2 [Audet and Dennis, 2009]

Functioning of the PB-DMulti-MADS algorithm : preliminaries

Constraint violation function

Given the multiobjective optimization problem

$$\min_{x\in\Omega}f(x)=[f_1(x),f_2(x),\ldots,f_m(x)]^\top$$

where

$$\Omega = \{x \in X : c_i(x) \leq 0, \ \forall i \in \mathcal{I}\} \subset \mathbb{R}^n,$$

the constraint violation function [Audet and Dennis, 2009] is defined as

$$h(x) = \begin{cases} \sum_{i \in \mathcal{I}} \max\{c_i(x), 0\}^2 & \text{if } x \in X; \\ +\infty & \text{otherwise.} \end{cases}$$

Definition (Extension of the dominance relation for constrained optimization [Audet and Dennis, 2009])

- $y \in X$ is said to dominate $x \in X$ if
 - Both points are feasible and $y \in \Omega$ dominates $x \in \Omega$, denoted by $y \prec_f x$.
 - Both points are infeasible, $f(y) \le f(x)$ and $h(y) \le h(x)$ with at least one inequality strictly verified, denoted by $y \prec_h x$.

Functioning of the PB-DMulti-MADS algorithm : preliminaries

Constraint violation function

Given the multiobjective optimization problem

$$\min_{\mathbf{x}\in\Omega}f(\mathbf{x})=\left[f_1(\mathbf{x}),f_2(\mathbf{x}),\ldots,f_m(\mathbf{x})\right]^{\top}$$

where

$$\Omega = \{x \in X : c_i(x) \leq 0, \ \forall i \in \mathcal{I}\} \subset \mathbb{R}^n,$$

the constraint violation function [Audet and Dennis, 2009] is defined as

$$h(x) = \begin{cases} \sum_{i \in \mathcal{I}} \max\{c_i(x), 0\}^2 & \text{if } x \in X; \\ +\infty & \text{otherwise.} \end{cases}$$

Definition (Extension of the dominance relation for constrained optimization [Audet and Dennis, 2009])

- $y \in X$ is said to dominate $x \in X$ if
 - Both points are feasible and $y \in \Omega$ dominates $x \in \Omega$, denoted by $y \prec_f x$.
 - Both points are infeasible, $f(y) \le f(x)$ and $h(y) \le h(x)$ with at least one inequality strictly verified, denoted by $y \prec_h x$.

Functioning of the PB-DMulti-MADS algorithm: main characteristics

PB-DMulti-MADS

- As in single-objective optimization, is built around a poll and a search.
- Similarly to DMS, keeps a list of non-dominated feasible points called an iterate list L^k

$$L^{k} = \{(x^{j}, \Delta^{j}), x^{j} \in \Omega, \Delta^{j} > 0, j = 1, 2, \dots, |L^{k}|\}.$$

• Similarly to DMS, choice of the poll center (x^k, Δ^k) among the elements of L^k .

Furthermore,

- Implements a filter-based approach based on the constraint violation function *h* as for PB-Mads.
- Keep a list of non-feasible incumbent points

$$I^{k} = \arg\min_{x \in U^{k}} \{f(x) : 0 < h(x) \le h_{\max}^{k}\}$$

where U^k is the set of infeasible non-dominated points and h_{\max}^k a barrier threshold updated at each iteration.

• As k increases, the barrier threshold h_{\max}^k is reduced.

Functioning of the PB-DMulti-MADS algorithm: main characteristics

PB-DMulti-MADS

- As in single-objective optimization, is built around a poll and a search.
- Similarly to DMS, keeps a list of non-dominated feasible points called an iterate list L^k

$$L^{k} = \{(x^{j}, \Delta^{j}), x^{j} \in \Omega, \Delta^{j} > 0, j = 1, 2, \dots, |L^{k}|\}.$$

• Similarly to DMS, choice of the poll center (x^k, Δ^k) among the elements of L^k . Furthermore,

- Implements a filter-based approach based on the constraint violation function *h* as for PB-Mads.
- Keep a list of non-feasible incumbent points

$$I^k = \arg\min_{x \in U^k} \{f(x) : 0 < h(x) \le h_{\max}^k\}$$

where U^k is the set of infeasible non-dominated points and h_{max}^k a barrier threshold updated at each iteration.

• As k increases, the barrier threshold h_{\max}^k is reduced.

Functioning of the PB-DMulti-MADS algorithm: the poll step

As for the single-objective case, two poll centers are considered:

• The feasible poll center x_F^k (if it exists) must satisfy:

$$(x_F^k, \Delta^k) \in rg\max_{(x^j, \Delta^j) \in L^k} \Delta^j.$$

• The infeasible poll center x_l^k (if it exists) must satisfy:

$$(x_l^k, \Delta^k) \in rg\max_{x \in l^k} h(x).$$

• The optional poll center $x_{opt}^k \in I^k$ (dependent on x_F^k).

Functioning of the PB-DMulti-MADS algorithm: the poll step

As for the single-objective case, three poll centers are considered:

• The feasible poll center x_F^k (if it exists) must satisfy:

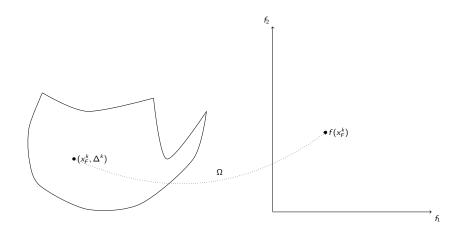
$$(x_F^k, \Delta^k) \in rg\max_{(x^j, \Delta^j) \in L^k} \Delta^j.$$

• The infeasible poll center x_l^k (if it exists) must satisfy:

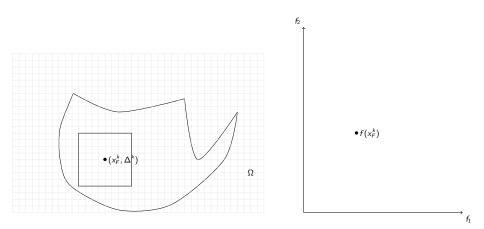
$$(x_l^k, \Delta^k) \in \arg \max_{x \in I^k} h(x).$$

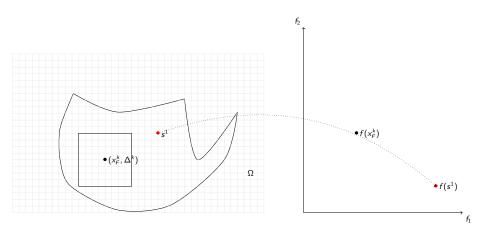
• The optional poll center $x_{opt}^k \in I^k$ (dependent on x_F^k).

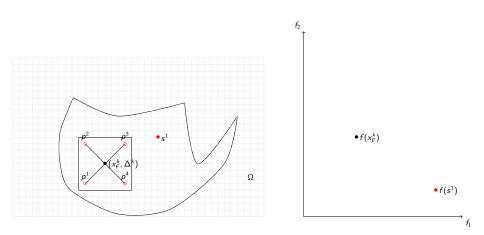
Initialization of the iteration



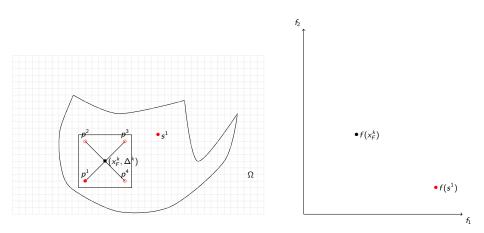
Frame of parameter Δ^k /corresponding mesh





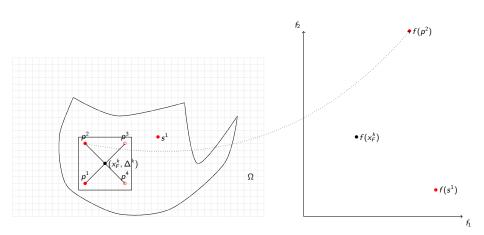


Evaluation at p^1 fails ! $p^1 \notin X$



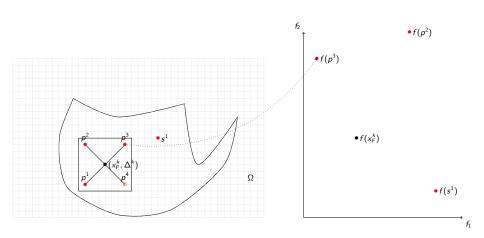
The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

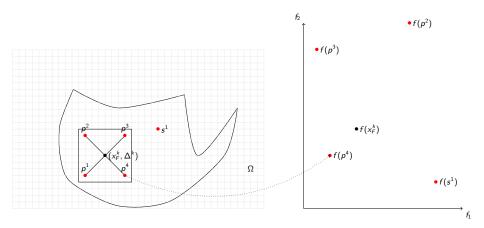


The PB-DMulti-MADS algorithm

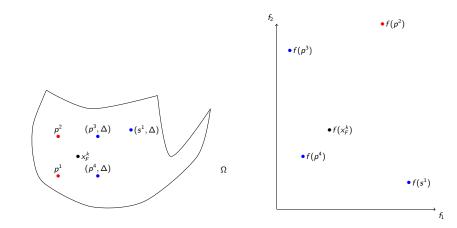
Reminder: an iteration of DMulti-MADS in the feasible case

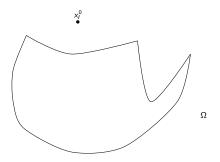


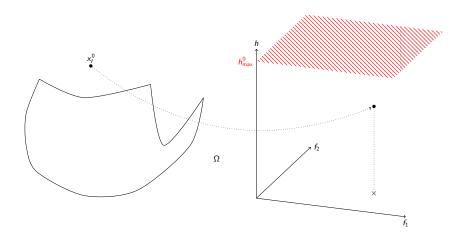
 p^4 dominates x_F^k : success !

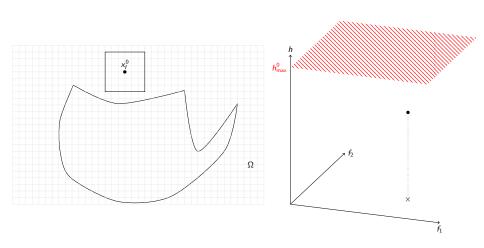


Keep new non-dominated points: affect them $\Delta \geq \Delta^k$

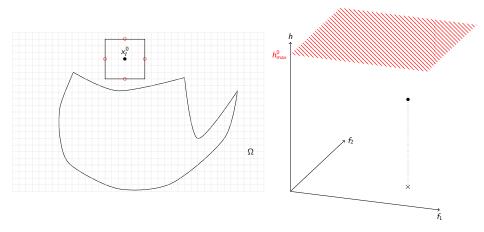




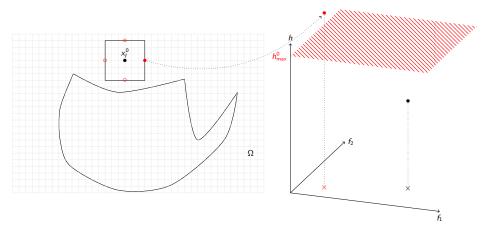




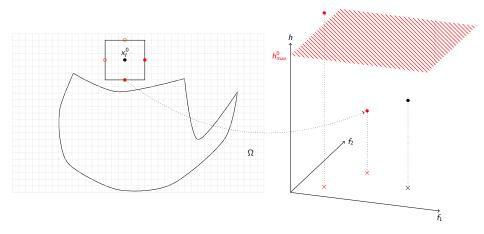
Poll step



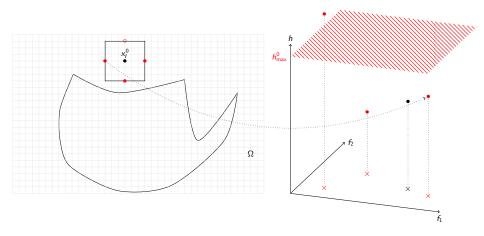
Reject point (above threshold)



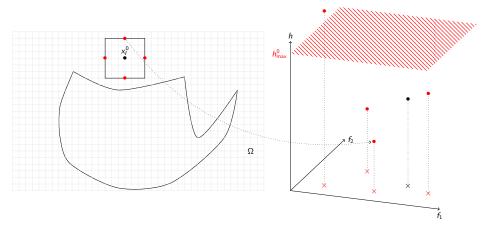
Better h, f uncomparable



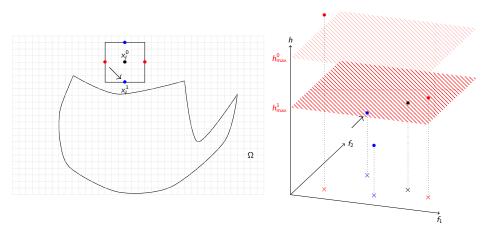
Worse h, f uncomparable

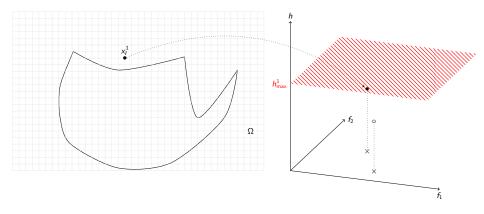


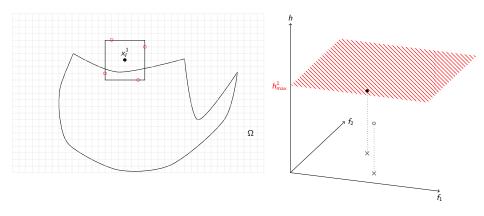
Dominates the current incumbent in terms of h of f values

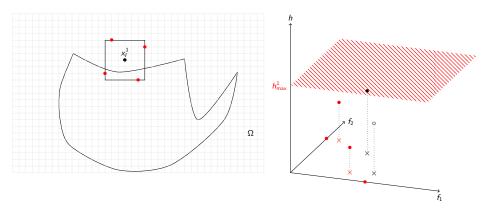


The new incumbent is the one among the new non-dominated ones (in terms of f) with the highest h-value

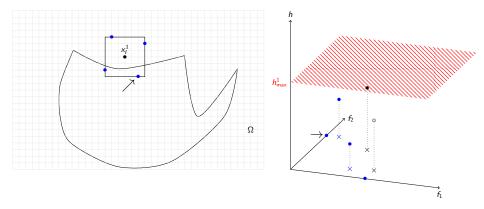




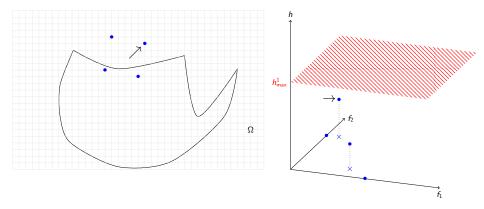




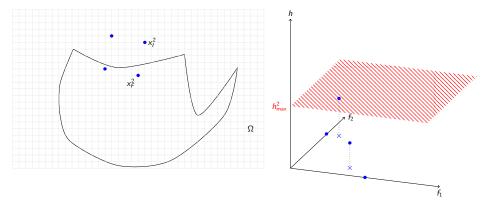
New feasible poll center



New infeasible poll center



 h_{\max}^k decreases toward iterations



Updating h_{\max}^k

Success, dominance and failure [Audet and Dennis, 2009] At the end of an iteration k, three cases can happen:

- If a new point y is found which satisfies y ≺_f x^k_F or y ≺_h x^k_l, the iteration is said to be dominating. In this case, h^{k+1}_{max} := h(x^k_l).
- If a new point y is found which satisfies $0 < h(x) < h(x_l^k)$, then the barrier threshold value is set to

$$h_{\max}^{k+1} := \max_{x \in V^k} \{ 0 < h(x) < h(x_l^k) \}$$

where V^k is the cache at the end of iteration k. The iteration is said to be improving.

• Otherwise, the iteration is declared as unsuccessful, and $h_{\max}^{k+1} := h(x_l^k)$.

A bit of theory I

Assumptions

- Assume a starting point in X.
- All iterates lie at the intersection of a mesh and a compact set.

We introduce a definition taken from [Liuzzi et al., 2016].

Definition (Linked sequence)

Let $\{L^k\}_{k\in\mathbb{N}}$ with $L^k = \{(x_F^j, \Delta^j), x_F^j \in \Omega, \Delta^j > 0, j = 1, 2, \dots, |L^k|\}$ be the sequence of current approximated Pareto sets generated by the DMulti-MADS algorithm. A linked sequence is defined as a sequence $\{(x_F^{j_k}, \Delta^{j_k})\}$ such that for any $k = 1, 2, \dots$, the pair $(x_F^{j_k}, \Delta^{j_k}) \in L^k$ is generated at iteration k - 1 of DMulti-MADS by the pair $(x_F^{j_{k-1}}, \Delta^{j_{k-1}}) \in L^{k-1}$.

Under some classical direct search assumptions, we can prove:

A bit of theory II

Theorem (Feasible case)

For each linked sequence $\{(x_F^{j_k}, \Delta^{j_k})\}$, there exists a subset of indexes K' such that $\{x_F^{j_k}\}_{k \in K'}$ is a refining subsequence converging to a Pareto-Clarke locally optimal point $\hat{x}_F^{j_k}$.

Unfeasible case

Under investigation (similar to [Audet and Dennis, 2009] ?).

Why a filter-based approach ?

- "Intuitive" to understand.
- "No external parameters/optimization hyperparameters".

PB-DMulti-MADS VS !!

Core

- Implemented in Julia.
- Speculative search.
- Poll step: n + 1 directions for the first poll center, 2 directions for the second poll center and 2 directions for the optional poll center, Orthomads strategy.
- Granular and dynamic mesh scaling [Audet et al., 2019].
- Spread strategy.
- Opportunistic.

Competitors

- BiMADS [Audet et al., 2008] implemented in Nomad.3.9.1 [Le Digabel, 2011]: default parameters, line search initialization.
- DFMO [Liuzzi et al., 2016] implemented in DFMO; default parameters.
- NSGA-II [Deb et al., 2000] implemented in pymoo 0.4.1; default parameters, 10 different seeds.

Data profiles

- Use of the hypervolume indicator [Zitzler et al., 2003] to build data profiles.
- Use of the constrained benchmark set proposed by [Liuzzi et al., 2016] of functions with m = 2, n ∈ {3,..., 30}; |P| = 103.
- For each algorithm $a \in A$, a maximal budget of 20000 evaluations.

Preliminary results I

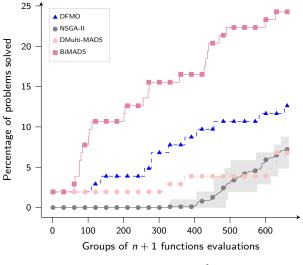


Figure: Data profiles; $\tau = 10^{-2}$

Preliminary results II

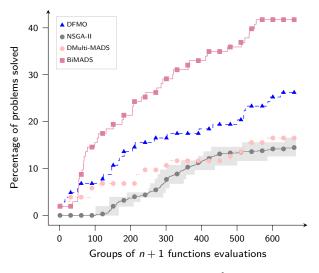


Figure: Data profiles; $\tau = 5 \times 10^{-2}$

Preliminary results III

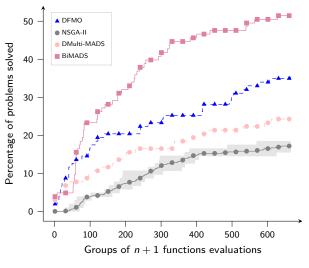


Figure: Data profiles; $\tau = 10^{-1}$

Discussion

Pessimistic view

It is not really efficient: change paradigm (merit function approach) ?

Optimistic view

- Implement a two-phase approach such as BiMADS.
- Deactivate BiMADS models.
- Reinvestigate code.

Once it is done

- Compare to DMS with a penalty-based approach [Liuzzi et al., 2016].
- Test on Styrene (against extreme barrier strategy).

Discussion

Pessimistic view

It is not really efficient: change paradigm (merit function approach) ?

Optimistic view

- Implement a two-phase approach such as BiMADS.
- Deactivate BiMADS models.
- Reinvestigate code.

Once it is done

- Compare to DMS with a penalty-based approach [Liuzzi et al., 2016].
- Test on Styrene (against extreme barrier strategy).

Discussion

Pessimistic view

It is not really efficient: change paradigm (merit function approach) ?

Optimistic view

- Implement a two-phase approach such as BiMADS.
- Deactivate BiMADS models.
- Reinvestigate code.

Once it is done

- Compare to DMS with a penalty-based approach [Liuzzi et al., 2016].
- Test on Styrene (against extreme barrier strategy).

Thank you for your attention ! Do you have any questions ?

Audet, C., Côté, P., Poissant, C., and Tribes, C. (2019).

Monotonic grey box direct search optimization. Optimization Letters.

Audet, C. and Dennis, J. (2009).

A progressive barrier for derivative-free nonlinear programming. SIAM Journal on Optimization, 20(1):445–472.

Audet, C. and Hare, W. (2017).

Derivative-Free and Blackbox Optimization. Springer International Publishing.

Audet, C., Savard, G., and Zghal, W. (2008).

Multiobjective optimization through a series of single-objective formulations. SIAM Journal on Optimization, 19(1):188–210.

Audet, C., Savard, G., and Zghal, W. (2010).

A mesh adaptive direct search algorithm for multiobjective optimization. European Journal of Operational Research, 204(3):545–556.

Cocchi, G., Liuzzi, G., Papini, A., and Sciandrone, M. (2018).

An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Computational Optimization and Applications, 69(2):267–296.

Custódio, A. L., Madeira, J. F. A., Vaz, A. I. F., and Vicente, L. N. (2011).

Direct multisearch for multiobjective optimization. SIAM Journal on Optimization, 21(3):1109–1140.

A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H.-P., editors, *Parallel Problem Solving from Nature PPSN VI*, pages 849–858, Berlin, Heidelberg, Springer Berlin Heidelberg.

Fletcher, R. and Leyffer, S. (2002).

Nonlinear programming without a penalty function. Mathematical Programming, 91(2):239–269.

Gratton, S. and Vicente, L. (2014).

A merit function approach for direct search. SIAM Journal on Optimization, 24(4):1980–1998.

Le Digabel, S. (2011).

Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm. ACM Trans. Math. Softw., 37(4):44:1–44:15.

Lewis, R. M., Torczon, V. J., and Kolda, T. G. (2006).

A generating set direct search augmented lagrangian algorithm for optimization with a combination of general and linear constraints. Technical report.

Liuzzi, G. and Lucidi, S. (2009).

A derivative-free algorithm for inequality constrained nonlinear programming via smoothing of an ℓ_{∞} penalty function. SIAM Journal on Optimization, 20(1):1–29.

Liuzzi, G., Lucidi, S., and Rinaldi, F. (2016).

A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM Journal on Optimization, 26(4):2744–2774.

Nocedal, J. and Wright, S. (2006).

Numerical optimization. Springer Science & Business Media.

Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2):117–132.