l I/ POLYTECHNIQUE at
@R foz=" @ e

\WE :
y 1! ¢ Grenoble

! Alpes

Polytechnique Montréal
Department of Mathematics and Industrial Engineering

A progressive barrier for blackbox/derivative-free multiobjective
optimization : very preliminary results

Ludovic SALOMON
Jean BIGEON
Sébastien LE DIGABEL



Before starting

Warnings !!
As the title indicates, this work is under development. J
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The problem

Multiobjective optimization problem

min £(x) = [A(x), B(:), - )]

where
e Q={xeX:c(x)<0, VieZ} CR"is the feasible set.
o fi:R" - RU{oco} for i =1,2,...,m, m > 2 are objective functions.

o ¢ : R" - RU{oo} for i € T are relaxable constraints.

The fi for i =1,2,...,m and ¢; for i € Z are supposed to be blackboxes.
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Introduction

What is a blackbox ?
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Introduction

Pareto dominance

Given two vectors z' and z? in the objective space, we write that:
<P = ERT—=Vi=1,2,...,m,z} <z}

Given two decision vectors x* and x2, we write that:
o x* < x* (x! weakly dominates x?) if and only if f(x') < f(x?). ex:
f(xY) =[-1,1]", f(x*) =[1,1]".
o x' < x? (x! dominates x?) if and only if x* < x? and at least one objective is strictly
better than another. ex: f(x) =[-1,0]", f(x*) =[1,2]".

o x* || x* (x* and x? are incomparable) if neither x* weakly dominates x
weakly dominates x*. ex: f(x') =[-1,0]", f(x*) =[-2,1]".

2 nor X2
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Pareto dominance

Given two vectors z' and z? in the objective space, we write that:
<P = ERT—=Vi=1,2,...,m,z} <z}

Given two decision vectors x* and x2, we write that:
o x* < x* (x! weakly dominates x?) if and only if f(x') < f(x?). ex:
f(x')=[-1,1]", f(x*) =[1,1]".
o x' < x? (x! dominates x?) if and only if x* < x? and at least one objective is strictly
better than another. ex: f(x) =[-1,0]", f(x*) =[1,2]".
o x* || x* (x* and x? are incomparable) if neither x* weakly dominates x
weakly dominates x*. ex: f(x') =[-1,0]", f(x*) =[-2,1]".

2 nor X2

Pareto dominance

x € € is said to be Pareto-optimal if there is no other vector in Q that dominates it.
The set of Pareto-optimal solutions (decision variables) is called the Pareto set and the
image of the Pareto set is called the Pareto front.
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Introduction

Previously, in mesh adaptive direct search algorithms for multiobjective
optimization

We proposed the DMulti-MADS algorithm which:

o is strongly inspired by Direct MultiSearch (DMS) [Custédio et al., 2011] and
BiMADS [Audet et al., 2008].

@ Handles more than 2 objectives, contrary to BiMADS.

@ Converges to a set of locally optimal Pareto points contrary to DMS, under mild
assumptions.

o Does not aggregate any of the objective functions.

@ Practically, it is competitive according to other state-of-the-art algorithms
(NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BiMADS).
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Introduction

Previously, in mesh adaptive direct search algorithms for multiobjective
optimization

We proposed the DMulti-MADS algorithm which:

o is strongly inspired by Direct MultiSearch (DMS) [Custédio et al., 2011] and
BiMADS [Audet et al., 2008].

@ Handles more than 2 objectives, contrary to BiMADS.

@ Converges to a set of locally optimal Pareto points contrary to DMS, under mild
assumptions.

o Does not aggregate any of the objective functions.

@ Practically, it is competitive according to other state-of-the-art algorithms
(NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BiMADS).

The question

DMulti-MADS deals with general constraints via an extreme barrier approach, i.e.

fa(x) = [+o00, 400, ..., 400] if x QEIQ
f(x) otherwise.

Could we exploit relaxable constraints ¢;, Vi € Z ?
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Introduction

What has the derivative-free/blackbox literature ever done for us ?

@ In single-objective convergent-based derivative-free methods:

With derivatives ‘ Without derivatives

Augmented Lagrangian [Nocedal and Wright, 2006] [Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002] [Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006] [Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006] [Liuzzi and Lucidi, 2009]
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Introduction

What has the derivative-free/blackbox literature ever done for us ?

@ In single-objective convergent-based derivative-free methods:

With derivatives \ Without derivatives

Augmented Lagrangian [Nocedal and Wright, 2006] [Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002] [Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006] [Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006] [Liuzzi and Lucidi, 2009]

@ In multiobjective convergent-based derivative-free methods:

o Scalarization based approaches [Audet et al., 2008, Audet et al., 2010]
e Merit function based-approaches [Liuzzi et al., 2016]
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The PB-MADS algorithm for constrained single-objective optimization

o At each iteration, MADS attempts to find better points on the mesh
M* = {x* + 6Dy :y e N’} CR"

where:

o xk is the current incumbent solution.

o 6K > 0 is the mesh size parameter.

o D = GZ with G € R™" inversible and Z € Z"*P such that the columns of Z form a
positive spanning set of R".

@ Each iteration is organized around a poll and a search step.
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The PB-MADS algorithm for constrained single-objective optimization

o At each iteration, MADS attempts to find better points on the mesh
M* = {x*+ 6Dy :y e N°} CR"

where:

o x¥ is the current incumbent solution.

o 6K > 0 is the mesh size parameter.

o D = GZ with G € R"X" inversible and Z € Z"*P such that the columns of Z form a
positive spanning set of R".

@ Each iteration is organized around a poll and a search step.

Constraints are aggregated using the constraint violation function

h(x) = {Ziel max{c,-(x)70}2 if x € X;

+o0 otherwise.

PB-MADS considered the constrained single objective optimization problem as a
biobjective one, where f and h are the two objective functions to optimize.

Use a threshold value hk,, to reject not-promising points.

Towards the iterations, hX., is reduced.
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The poll |

@ The convergence analysis is based on the poll step, where one evaluates the
following candidates:

P*={x"+"d:d e Dy} C F*
where D is a positive spanning set of directions and F¥ is the frame centered at x*
of frame size A* > 0.

St=1,4k=1 5 Ak =

»
.

»”

Example of frames and meshes in R? [Audet and Hare, 2017]
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The poll 11

@ The PB-Mads algorithm allows the evaluations of poll candidates around two poll
centers, the best feasible one x£ and the best infeasible one x;.

e~

L

Example of poll sets for PB-MADS in R? [Audet and Dennis, 2009]
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Functioning of the PB-DMulti-MADS algorithm : preliminaries

Constraint violation function

Given the multiobjective optimization problem
min £(x) = [i(x), (), -, fm(x)]"
Xe
where
Q={xeX:c(x)<0, VieZ} CR",
the constraint violation function [Audet and Dennis, 2009] is defined as

h(x) = {Z:’ez max{c,»(x)70}2 if x € X;

+00 otherwise.
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Functioning of the PB-DMulti-MADS algorithm : preliminaries

Constraint violation function

Given the multiobjective optimization problem
min £(x) = [i(x), (), -, fm(x)]"
Xe
where
Q={xeX:c(x)<0, VieZ} CR",
the constraint violation function [Audet and Dennis, 2009] is defined as

h(x) = {Z:’ez max{c,»(x)70}2 if x € X;

+00 otherwise.

Definition (Extension of the dominance relation for constrained
optimization [Audet and Dennis, 2009])

y € X is said to dominate x € X if
@ Both points are feasible and y € Q dominates x € Q, denoted by y <r x.

@ Both points are infeasible, f(y) < f(x) and h(y) < h(x) with at least one inequality
strictly verified, denoted by y < x.

v
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Functioning of the PB-DMulti-MADS algorithm: main characteristics

PB-DMulti-MADS
@ As in single-objective optimization, is built around a poll and a search.

o Similarly to DMS, keeps a list of non-dominated feasible points called an iterate list
Lk
LF={(d, ), X e, & >0,j=1,2,...,|L¥}.
o Similarly to DMS, choice of the poll center (x*, A¥) among the elements of L*.

Furthermore,
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The PB-DMulti-MADS algorithm

Functioning of the PB-DMulti-MADS algorithm: main characteristics

PB-DMulti-MADS
@ As in single-objective optimization, is built around a poll and a search.
° Similarly to DMS, keeps a list of non-dominated feasible points called an iterate list
L
LF={(d, ), X e, & >0,j=1,2,...,|L¥}.
o Similarly to DMS, choice of the poll center (x*, A¥) among the elements of L*.
Furthermore,

@ Implements a filter-based approach based on the constraint violation function h as
for PB-Mads.

o Keep a list of non-feasible incumbent points
I* = arg mink{f(x) 10 < h(x) < hfo)
xey
where U* is the set of infeasible non-dominated points and A%, a barrier threshold

updated at each iteration.

@ As k increases, the barrier threshold A%, is reduced.
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Functioning of the PB-DMulti-MADS algorithm: the poll step

As for the single-objective case, two poll centers are considered:

o The feasible poll center x£ (if it exists) must satisfy:

(xf, A¥) carg max A
(x,A0)eLk

o The infeasible poll center xf (if it exists) must satisfy:

(xf,A%) € arg max h(x).
xel
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Functioning of the PB-DMulti-MADS algorithm: the poll step

As for the single-objective case, three poll centers are considered:

o The feasible poll center x£ (if it exists) must satisfy:

(xf, A¥) carg max A
(x,A0)eLk

o The infeasible poll center xf (if it exists) must satisfy:

(xf,A%) € arg max h(x).
xel

@ The optional poll center X,fpt € I* (dependent on xf).
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Reminder: an iteration of DMulti-MADS in the feasible case

Initialization of the iteration

o f(xf)
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Reminder: an iteration of DMulti-MADS in the feasible case

Frame of parameter A /corresponding mesh

o F(xf)
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Reminder: an iteration of DMulti-MADS in the feasible case

Search step

Cef(xf)

"o f(sh)
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Reminder: an iteration of DMulti-MADS in the feasible case

Poll step

f

)

o f(s')

f
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Reminder: an iteration of DMulti-MADS in the feasible case

Evaluation at p! fails | p! ¢ X

f

o (xf)

of(s")

f
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Reminder: an iteration of DMulti-MADS in the feasible case

2
’ *f(p?)

o f(xf)

o f(s')

f
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Reminder: an iteration of DMulti-MADS in the feasible case

f

o f(p?)

*f(P)

o f(xf)

o f(s')

f
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Reminder: an iteration of DMulti-MADS in the feasible case

p* dominates x£ : success !

f

*f(p%)

°f(p%)

o f(xF)
*f(p%)

o f(s')

f
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Reminder: an iteration of DMulti-MADS in the feasible case

Keep new non-dominated points: affect them A > A¥

(p3‘A) o(s',A)

o xf
(', B)
L]

f

of(p%)

)

o f(p*)

*f(p?)

o f(s')

f
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PB-DMulti-MADS: Iteration 0
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PB-DMulti-MADS: Iteration 0

h
xP o |.:
. Pimax
e
f
Q
X
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PB-DMulti-MADS: Iteration 0

h
0
0 s
] hfrax
L]
f
Q
X
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PB-DMulti-MADS: Iteration 0

Poll step
h
e[
L]
f
Q
X
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PB-DMulti-MADS: Iteration 0

Reject point (above threshold)

Xi TR
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Better h, f uncomparable

¥ P |

f

f
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PB-DMulti-MADS: Iteration 0

Worse h, f uncomparable
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PB-DMulti-MADS: Iteration 0

Dominates the current incumbent in terms of h of f values

xP K|+
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

The new incumbent is the one among the new non-dominated

ones (in terms of f) with the highest h-value
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PB-DMulti-MADS: Iteration 1

1ol
max
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PB-DMulti-MADS: Iteration 1

Lo
max

Presentation (18/31) DMulti-MADS



PB-DMulti-MADS: Iteration 1

Lo
max
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PB-DMulti-MADS: Iteration 1

New feasible poll center

1 S
Pmax

Presentation (18/31) DMulti-MADS



PB-DMulti-MADS: Iteration 1

New infeasible poll center

1 S
Pmax
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PB-DMulti-MADS: Iteration 1

h% . decreases toward iterations

.X/z

2 |0
hinax

Presentation (18/31) DMulti-MADS



Updating hX

max

Success, dominance and failure [Audet and Dennis, 2009]

At the end of an iteration k, three cases can happen:

o If a new point y is found which satisfies y <¢ x£ or y <4 xf, the iteration is said to
be dominating. In this case, h%5} := h(xf).

o If a new point y is found which satisfies 0 < h(x) < h(xf), then the barrier
threshold value is set to
it -= max{0 < h(x) < h(xf)}
xeVk

where V¥ is the cache at the end of iteration k. The iteration is said to be
improving.

o Otherwise, the iteration is declared as unsuccessful, and h&i! := h(x/).
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A bit of theory |

Assumptions
@ Assume a starting point in X.

@ All iterates lie at the intersection of a mesh and a compact set.

We introduce a definition taken from [Liuzzi et al., 2016].

Definition (Linked sequence)

Let {L*}ken with LX = {(XJF-,AJ),% eQN>0,j=1,2,..., |Lk|} be the sequence of
current approximated Pareto sets generated by the DMulti-MADS algorithm. A linked
sequence is defined as a sequence {(xf:k,Ajk)} such that for any k =1,2,..., the pair
(x%, &) € L* is generated at iteration k — 1 of DMulti-MADS by the pair
(Xﬁ—17AJ'k—1) c k1

Under some classical direct search assumptions, we can prove:
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A bit of theory Il

Theorem (Feasible case)

For each linked sequence {(xl*, AJx)}, there exists a subset of indexes K’ such that
{X,J:" Ykek is a refining subsequence converging to a Pareto-Clarke locally optimal point
T
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Why a filter-based approach ?

@ "Intuitive" to understand.

o "No external parameters/optimization hyperparameters".
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PB-DMulti-MADS VS !l

Core

@ Implemented in Julia.

Speculative search.

Poll step: n+ 1 directions for the first poll center, 2 directions for the second poll
center and 2 directions for the optional poll center, Orthomads strategy.

Granular and dynamic mesh scaling [Audet et al., 2019].

Spread strategy.

Opportunistic.

Competitors

e BiMADS [Audet et al., 2008] implemented in Nomad.3.9.1 [Le Digabel, 2011]:
default parameters, line search initialization.

e DFMO [Liuzzi et al., 2016] implemented in DFMO; default parameters.

o NSGA-II [Deb et al., 2000] implemented in pymoo 0.4.1; default parameters, 10
different seeds.
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Data profiles

@ Use of the hypervolume indicator [Zitzler et al., 2003] to build data profiles.

@ Use of the constrained benchmark set proposed by [Liuzzi et al., 2016] of functions
with m=2, n e {3,...,30}; |P| = 103.

o For each algorithm a € A, a maximal budget of 20000 evaluations.
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Preliminary results |
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Figure: Data profiles; 7 = 102

Presentation (25/31) DMulti-MADS



Preliminary results Il
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Figure: Data profiles; 7 =5 X 102
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Preliminary results Il
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Discussion

Pessimistic view J

It is not really efficient: change paradigm (merit function approach) ?
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Discussion

Pessimistic view

It is not really efficient: change paradigm (merit function approach) ?

Optimistic view
@ Implement a two-phase approach such as BiMADS.
o Deactivate BIMADS models.

@ Reinvestigate code.
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Discussion

Pessimistic view

It is not really efficient: change paradigm (merit function approach) ?

Optimistic view
@ Implement a two-phase approach such as BiMADS.
o Deactivate BIMADS models.

@ Reinvestigate code.

Once it is done
o Compare to DMS with a penalty-based approach [Liuzzi et al., 2016].

@ Test on Styrene (against extreme barrier strategy).
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Thank you for your attention ! Do you have any questions ?
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