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Before starting

Warnings !!
As the title indicates, this work is under development.
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Introduction

The problem

Multiobjective optimization problem

min
x∈Ω

f (x) = [f1(x), f2(x), . . . , fm(x)]>

where
Ω = {x ∈ X : ci (x) ≤ 0, ∀i ∈ I} ⊂ Rn is the feasible set.
fi : Rn → R ∪ {∞} for i = 1, 2, . . . ,m, m ≥ 2 are objective functions.
ci : Rn → R ∪ {∞} for i ∈ I are relaxable constraints.

The fi for i = 1, 2, . . . ,m and ci for i ∈ I are supposed to be blackboxes.
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Introduction

What is a blackbox ?
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Introduction

Pareto dominance

Given two vectors z1 and z2 in the objective space, we write that:
z1 ≤ z2 ⇐⇒ z2 − z1 ∈ Rm

+ ⇐⇒ ∀i = 1, 2, . . . ,m , z1i ≤ z2i .

Given two decision vectors x1 and x2, we write that:
x1 4 x2 (x1 weakly dominates x2) if and only if f (x1) ≤ f (x2). ex:
f (x1) = [−1, 1]>, f (x2) = [1, 1]>.
x1 ≺ x2 (x1 dominates x2) if and only if x1 4 x2 and at least one objective is strictly
better than another. ex: f (x1) = [−1, 0]>, f (x2) = [1, 2]>.
x1 ‖ x2 (x1 and x2 are incomparable) if neither x1 weakly dominates x2 nor x2

weakly dominates x1. ex: f (x1) = [−1, 0]>, f (x2) = [−2, 1]>.

Pareto dominance
x ∈ Ω is said to be Pareto-optimal if there is no other vector in Ω that dominates it.
The set of Pareto-optimal solutions (decision variables) is called the Pareto set and the
image of the Pareto set is called the Pareto front.
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Introduction

f1

f2

f (x1)
•

f (x2)
•

f (x3)
•

f (x4)
•

Dominance zone

Dominated zone

Indifference zone

Indifference zone

An illustration of Pareto dominance for a minimization biobjective problem.
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Introduction

Previously, in mesh adaptive direct search algorithms for multiobjective
optimization

We proposed the DMulti-MADS algorithm which:
is strongly inspired by Direct MultiSearch (DMS) [Custódio et al., 2011] and
BiMADS [Audet et al., 2008].
Handles more than 2 objectives, contrary to BiMADS.
Converges to a set of locally optimal Pareto points contrary to DMS, under mild
assumptions.
Does not aggregate any of the objective functions.
Practically, it is competitive according to other state-of-the-art algorithms
(NSGAII [Deb et al., 2000], DMS, MOIF [Cocchi et al., 2018], BiMADS).

The question
DMulti-MADS deals with general constraints via an extreme barrier approach, i.e.

fΩ(x) =
{

[+∞,+∞, . . . ,+∞] if x /∈ Ω
f (x) otherwise.

Could we exploit relaxable constraints ci , ∀i ∈ I ?
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Introduction

What has the derivative-free/blackbox literature ever done for us ?

In single-objective convergent-based derivative-free methods:

With derivatives Without derivatives
Augmented Lagrangian [Nocedal and Wright, 2006] [Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002] [Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006] [Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006] [Liuzzi and Lucidi, 2009]

In multiobjective convergent-based derivative-free methods:
Scalarization based approaches [Audet et al., 2008, Audet et al., 2010]
Merit function based-approaches [Liuzzi et al., 2016]

Presentation (9/31) DMulti-MADS July 30, 2019 9 / 31



Introduction

What has the derivative-free/blackbox literature ever done for us ?

In single-objective convergent-based derivative-free methods:

With derivatives Without derivatives
Augmented Lagrangian [Nocedal and Wright, 2006] [Lewis et al., 2006]
Filter approach [Fletcher and Leyffer, 2002] [Audet and Dennis, 2009]
Merit function [Nocedal and Wright, 2006] [Gratton and Vicente, 2014]
Penalty function [Nocedal and Wright, 2006] [Liuzzi and Lucidi, 2009]

In multiobjective convergent-based derivative-free methods:
Scalarization based approaches [Audet et al., 2008, Audet et al., 2010]
Merit function based-approaches [Liuzzi et al., 2016]

Presentation (9/31) DMulti-MADS July 30, 2019 9 / 31



The PB-DMulti-MADS algorithm

The PB-MADS algorithm for constrained single-objective optimization

At each iteration, MADS attempts to find better points on the mesh

Mk = {x k + δkDy : y ∈ Np} ⊂ Rn

where:
xk is the current incumbent solution.
δk > 0 is the mesh size parameter.
D = GZ with G ∈ Rn×n inversible and Z ∈ Zn×p such that the columns of Z form a
positive spanning set of Rn.

Each iteration is organized around a poll and a search step.
Constraints are aggregated using the constraint violation function

h(x) =
{∑

i∈I max{ci (x), 0}2 if x ∈ X ;
+∞ otherwise.

PB-MADS considered the constrained single objective optimization problem as a
biobjective one, where f and h are the two objective functions to optimize.
Use a threshold value hk

max to reject not-promising points.
Towards the iterations, hk

max is reduced.
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The PB-DMulti-MADS algorithm

The poll I

The convergence analysis is based on the poll step, where one evaluates the
following candidates:

Pk = {x k + δkd : d ∈ Dk
∆} ⊂ F k

where Dk
∆ is a positive spanning set of directions and F k is the frame centered at x k

of frame size ∆k > 0.

Example of frames and meshes in R2 [Audet and Hare, 2017]

Presentation (11/31) DMulti-MADS July 30, 2019 11 / 31



The PB-DMulti-MADS algorithm

The poll II

The PB-Mads algorithm allows the evaluations of poll candidates around two poll
centers, the best feasible one x k

F and the best infeasible one x k
I .

Example of poll sets for PB-MADS in R2 [Audet and Dennis, 2009]
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The PB-DMulti-MADS algorithm

Functioning of the PB-DMulti-MADS algorithm : preliminaries

Constraint violation function
Given the multiobjective optimization problem

min
x∈Ω

f (x) = [f1(x), f2(x), . . . , fm(x)]>

where
Ω = {x ∈ X : ci (x) ≤ 0, ∀i ∈ I} ⊂ Rn,

the constraint violation function [Audet and Dennis, 2009] is defined as

h(x) =
{∑

i∈I max{ci (x), 0}2 if x ∈ X ;
+∞ otherwise.

Definition (Extension of the dominance relation for constrained
optimization [Audet and Dennis, 2009])
y ∈ X is said to dominate x ∈ X if

Both points are feasible and y ∈ Ω dominates x ∈ Ω, denoted by y ≺f x .
Both points are infeasible, f (y) ≤ f (x) and h(y) ≤ h(x) with at least one inequality
strictly verified, denoted by y ≺h x .
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The PB-DMulti-MADS algorithm

Functioning of the PB-DMulti-MADS algorithm: main characteristics

PB-DMulti-MADS
As in single-objective optimization, is built around a poll and a search.
Similarly to DMS, keeps a list of non-dominated feasible points called an iterate list
Lk

Lk = {(x j ,∆j ), x j ∈ Ω,∆j > 0, j = 1, 2, . . . , |Lk |}.

Similarly to DMS, choice of the poll center (x k ,∆k ) among the elements of Lk .
Furthermore,

Implements a filter-based approach based on the constraint violation function h as
for PB-Mads.
Keep a list of non-feasible incumbent points

Ik = arg min
x∈Uk
{f (x) : 0 < h(x) ≤ hk

max}

where Uk is the set of infeasible non-dominated points and hk
max a barrier threshold

updated at each iteration.
As k increases, the barrier threshold hk

max is reduced.
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The PB-DMulti-MADS algorithm

Functioning of the PB-DMulti-MADS algorithm: the poll step

As for the single-objective case, two poll centers are considered:
The feasible poll center x k

F (if it exists) must satisfy:

(x k
F ,∆k ) ∈ arg max

(x j ,∆j )∈Lk
∆j .

The infeasible poll center x k
I (if it exists) must satisfy:

(x k
I ,∆k ) ∈ arg max

x∈Ik
h(x).

The optional poll center x k
opt ∈ Ik (dependent on x k

F ).
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )

Initialization of the iteration
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )

Frame of parameter ∆k/corresponding mesh
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)

Search step
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)
◦
p1

◦
p2

◦
p3

◦
p4

Poll step
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)
•
p1

◦
p2

◦
p3

◦
p4

Evaluation at p1 fails ! p1 /∈ X
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)
•
p1

•
p2

◦
p3

◦
p4

• f (p2)
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)
•
p1

•
p2

•
p3

◦
p4

• f (p2)

• f (p3)
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•(x k
F ,∆k )

• f (x k
F )•s1

• f (s1)
•
p1

•
p2

•
p3

•
p4

• f (p2)

• f (p3)

• f (p4)

p4 dominates x k
F : success !
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The PB-DMulti-MADS algorithm

Reminder: an iteration of DMulti-MADS in the feasible case

Ω

f1

f2

•x k
F

• f (x k
F )

• f (s1)

•(s1,∆)

•
p1

•
p2

•
(p3,∆)

•
(p4,∆)

• f (p2)

• f (p3)

• f (p4)

Keep new non-dominated points: affect them ∆ ≥ ∆k
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I

f1

f2

h

h0max

•

×
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PB-DMulti-MADS: Iteration 0

Ω

•
x0

I

f1

f2

h

h0max

•

×
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I ◦

◦

◦

◦

f1

f2

h

h0max

•

×

Poll step
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I •

◦

◦

◦

f1

f2

h

h0max

•

×

•

×

Reject point (above threshold)
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I •

•

◦

◦

f1

f2

h

h0max

•

×

•

×

•

×

Better h, f uncomparable
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I •

•

•

◦

f1

f2

h

h0max

•

×

•

×

•

×

•

×

Worse h, f uncomparable
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I •

•

•

•

f1

f2

h

h0max

•

×

•

×

•

×

•

×

•

×

Dominates the current incumbent in terms of h of f values
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 0

Ω

•
x0

I •

•

•

•

f1

f2

h

h0max

h1max
•

×

•

×

•

×

•

×

•

×

The new incumbent is the one among the new non-dominated
ones (in terms of f ) with the highest h-value

x1
I

↘

↗
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•
x1

I

f1

f2

h

h1max •

×

◦

×
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•
x1

I
◦

◦

◦

◦

f1

f2

h

h1max •

×

◦

×
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•
x1

I
•

•

•

•

f1

f2

h

h1max •

×

◦

×

•

•

•

×
•

×
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•
x1

I
•

•

•

•

f1

f2

h

h1max •

×

◦

×

•

•

•

×
•

×

↗

→

New feasible poll center
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•

•

•

•

f1

f2

h

h1max

•

•

•

×
•

×

↗

→

New infeasible poll center
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The PB-DMulti-MADS algorithm

PB-DMulti-MADS: Iteration 1

Ω

•

•

•

•

f1

f2

h

h2max

•

•

•

×
•

×

x2
F

x2
I

hk
max decreases toward iterations
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The PB-DMulti-MADS algorithm

Updating hk
max

Success, dominance and failure [Audet and Dennis, 2009]
At the end of an iteration k, three cases can happen:

If a new point y is found which satisfies y ≺f x k
F or y ≺h x k

I , the iteration is said to
be dominating. In this case, hk+1

max := h(x k
I ).

If a new point y is found which satisfies 0 < h(x) < h(x k
I ), then the barrier

threshold value is set to

hk+1
max := max

x∈V k
{0 < h(x) < h(x k

I )}

where V k is the cache at the end of iteration k. The iteration is said to be
improving.

Otherwise, the iteration is declared as unsuccessful, and hk+1
max := h(x k

I ).
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The PB-DMulti-MADS algorithm

A bit of theory I

Assumptions
Assume a starting point in X .
All iterates lie at the intersection of a mesh and a compact set.

We introduce a definition taken from [Liuzzi et al., 2016].

Definition (Linked sequence)

Let {Lk}k∈N with Lk =
{

(x j
F ,∆

j ), x j
F ∈ Ω,∆j > 0, j = 1, 2, . . . , |Lk |

}
be the sequence of

current approximated Pareto sets generated by the DMulti-MADS algorithm. A linked
sequence is defined as a sequence {(x jk

F ,∆
jk )} such that for any k = 1, 2, . . ., the pair

(x jk ,∆jk ) ∈ Lk is generated at iteration k − 1 of DMulti-MADS by the pair
(x jk−1

F ,∆jk−1) ∈ Lk−1.

Under some classical direct search assumptions, we can prove:
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The PB-DMulti-MADS algorithm

A bit of theory II

Theorem (Feasible case)

For each linked sequence {(x jk
F ,∆

jk )}, there exists a subset of indexes K ′ such that
{x jk

F }k∈K ′ is a refining subsequence converging to a Pareto-Clarke locally optimal point
x̂ j

F .

Unfeasible case
Under investigation (similar to [Audet and Dennis, 2009] ?).
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The PB-DMulti-MADS algorithm

Why a filter-based approach ?

"Intuitive" to understand.
"No external parameters/optimization hyperparameters".
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Experiments

PB-DMulti-MADS VS !!

Core
Implemented in Julia.
Speculative search.
Poll step: n + 1 directions for the first poll center, 2 directions for the second poll
center and 2 directions for the optional poll center, Orthomads strategy.
Granular and dynamic mesh scaling [Audet et al., 2019].
Spread strategy.
Opportunistic.

Competitors
BiMADS [Audet et al., 2008] implemented in Nomad.3.9.1 [Le Digabel, 2011]:
default parameters, line search initialization.
DFMO [Liuzzi et al., 2016] implemented in DFMO; default parameters.
NSGA-II [Deb et al., 2000] implemented in pymoo 0.4.1; default parameters, 10
different seeds.
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Experiments

Data profiles

Use of the hypervolume indicator [Zitzler et al., 2003] to build data profiles.
Use of the constrained benchmark set proposed by [Liuzzi et al., 2016] of functions
with m = 2, n ∈ {3, . . . , 30}; |P| = 103.
For each algorithm a ∈ A, a maximal budget of 20000 evaluations.
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Preliminary results I
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Figure: Data profiles; τ = 10−2
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Experiments

Preliminary results II
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Figure: Data profiles; τ = 5× 10−2
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Experiments

Preliminary results III
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Figure: Data profiles; τ = 10−1
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Experiments

Discussion

Pessimistic view
It is not really efficient: change paradigm (merit function approach) ?

Optimistic view
Implement a two-phase approach such as BiMADS.
Deactivate BiMADS models.
Reinvestigate code.

Once it is done
Compare to DMS with a penalty-based approach [Liuzzi et al., 2016].
Test on Styrene (against extreme barrier strategy).
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Experiments

Thank you for your attention ! Do you have any questions ?
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